Wang Shangping, Wang Yumin. The eigenvector representation of LFSR\s output sequence[J]. Journal of Electronics & Information Technology, 2002, 24(11): 1608-1613.
Citation:
Wang Shangping, Wang Yumin. The eigenvector representation of LFSR\s output sequence[J]. Journal of Electronics & Information Technology, 2002, 24(11): 1608-1613.
Wang Shangping, Wang Yumin. The eigenvector representation of LFSR\s output sequence[J]. Journal of Electronics & Information Technology, 2002, 24(11): 1608-1613.
Citation:
Wang Shangping, Wang Yumin. The eigenvector representation of LFSR\s output sequence[J]. Journal of Electronics & Information Technology, 2002, 24(11): 1608-1613.
By using coefficient matrix representation of LFSR s output sequences and analyzing the eigenvector representation of the coefficient matrix, the output sequences of LFSR is expressed, where the coefficients completely rely on the initial input values of the LFSR and the roots of the reciprocal polynomial of LFSR s minimum polynomial. The result is more explicit than the former result.
丁存生,肖国镇,流密码学极其应用,北京,国防工业出版社,1994,39-78.[2]R.A. Rueppel, Analysis and Design of Stream Cipher[M], Berlin, Springer-Verlag, 1986, 33-67.[3]R.A. Rueppel, O. J. Staffelbach, Product of linear recurring sequences with maximum complexity,IEEE Trans. on IT, 1987, 33(1), 121-134.[4]M.J.B. Robshaw, On evaluating the linear complexity of a sequence of least period 2n.[J]. Design Codes and Cryptography.1994,4:263-[5]王育民,刘建伟.通信网的安全-理论与技术,西安,西安电子科技大学出版社,1999,230-281.