Advanced Search
Volume 27 Issue 2
Feb.  2005
Turn off MathJax
Article Contents
Liu Yang, Li Yu-shan. The Moving Object Detection Based on 2D Spatio-temporal Entropic Thresholding[J]. Journal of Electronics & Information Technology, 2005, 27(1): 39-42.
Citation: Zhang Xu-xiu, Qiu Tian-shuang . The Study on the Principle of Kurtosis Based ICA Method[J]. Journal of Electronics & Information Technology, 2005, 27(2): 206-209.

The Study on the Principle of Kurtosis Based ICA Method

  • Received Date: 2003-10-08
  • Rev Recd Date: 2004-01-25
  • Publish Date: 2005-02-19
  • The kurtosis based ICA approach is analyzed particularly and the geometrical explanation of this approach is presented in the paper. Furthermore, we elucidate the reasons of the indeterminacy of ICA solutions and explain the probability property by analyzing the process for finding out the ICA solutions. These analytic results and conclusions are also benefit to the study on other ICA methods.
  • Hyvariene A, Oja E. Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans. on Neural Networks.1999, 10(3):626-[2]Hyvariene A.[J].Karhunen J, Oja E. Independent Component Analysis [M]. New York: John Wiley Sons Inc.2001,:-[3]Hyvarinen A. Survey on independent component analysis[J].Neural Computing Surveys, 1999, 2:94 - 128.[4]Comon P. Independent component analysis: A new concept?[J].Signal Processing, 1994, 34(4): 287 - 314.
  • Cited by

    Periodical cited type(4)

    1. 姜迈,沙贵君,李宁. 基于PUCS与DTCWT的红外与弱可见光图像融合. 红外技术. 2022(07): 716-725 .
    2. 郭锋锋. 一种结合清晰区域增强多聚焦图像融合算法. 攀枝花学院学报. 2021(05): 90-95 .
    3. 赵春晖,郭蕴霆. 一种快速的基于稀疏表示和非下采样轮廓波变换的图像融合算法. 电子与信息学报. 2016(07): 1773-1780 . 本站查看
    4. 才华,陈广秋,刘广文,耿朕野,杨勇. 基于边界约束最优投影梯度NMF的TINST域图像融合方法. 吉林大学学报(理学版). 2016(05): 1087-1095 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2020) PDF downloads(670) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return