Zhang Qiang, Xu Jin. GLOBAL EXPONENTIAL STABILITY OF CELLULAR NEURAL NETWORKS[J]. Journal of Electronics & Information Technology, 2000, 22(3): 434-438.
Citation:
Zhang Qiang, Xu Jin. GLOBAL EXPONENTIAL STABILITY OF CELLULAR NEURAL NETWORKS[J]. Journal of Electronics & Information Technology, 2000, 22(3): 434-438.
Zhang Qiang, Xu Jin. GLOBAL EXPONENTIAL STABILITY OF CELLULAR NEURAL NETWORKS[J]. Journal of Electronics & Information Technology, 2000, 22(3): 434-438.
Citation:
Zhang Qiang, Xu Jin. GLOBAL EXPONENTIAL STABILITY OF CELLULAR NEURAL NETWORKS[J]. Journal of Electronics & Information Technology, 2000, 22(3): 434-438.
This paper studies the problem of global exponential stability for the cellular neural networks. Three criterions about global exponential stability of the cellular neural networks are obtained by means of Lyapunov function approach and the method of inequality analysis.
Chua L O,Yang L.Cellular nellural networks:Theory and applications.IEEE Trans on Circuits and Syst.1988,CAS-35(10):1257-1290.[2]梁学斌,吴立德.连续反馈联想记忆的吸引域和指数收敛速度的估计及其应用.电子科学学刊,1996,18(1): 1-6.[3]Khalil K.Nonlinear Systems.New York:Macmillan,1992,128.[4]廖晓昕.细胞神经网络的数学理论(I).中国科学,A辑,1994,24(9):902-9lO.[5]Michel A N,Miller R K.Qualitative Analysis of Large Scale Dynamical Systems.New York: Academic Press,1977:46-48.[6]梁学斌,吴立德.非线性神经网络全局指数稳定性分析及吸引域和模式恢复估计.复旦学报(自然科学版),1995, 34(3):31l-319.[7]梁学斌,吴立德. Hopfield型神经网络的全局指数稳定性及其应用.中国科学,A辑,1995,25(5):523-532.[8]廖晓昕,Hopfield型神经网络的稳定性.中国科学,A辑,1993,23(10):1025-1035.[9]Chua L O,Roska.T.Stabilityof a class of nonreciprocal networks with nonpositive.On Circuits and Syst.1990,37(12):1520-1527[10]Gilli M.Stability of cellular neural networks and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions.IEEE Trans.on Circuits and Syst.1994,41(8): 518-528.