Advanced Search
Volume 33 Issue 1
Feb.  2011
Turn off MathJax
Article Contents
Shao Hua, Su Wei-Min, Gu Hong. A Method of Estimation DOA for Non-uniform Linear Array[J]. Journal of Electronics & Information Technology, 2011, 33(1): 95-99. doi: 10.3724/SP.J.1146.2010.00337
Citation: Shao Hua, Su Wei-Min, Gu Hong. A Method of Estimation DOA for Non-uniform Linear Array[J]. Journal of Electronics & Information Technology, 2011, 33(1): 95-99. doi: 10.3724/SP.J.1146.2010.00337

A Method of Estimation DOA for Non-uniform Linear Array

doi: 10.3724/SP.J.1146.2010.00337
  • Received Date: 2010-04-01
  • Rev Recd Date: 2010-07-09
  • Publish Date: 2011-01-19
  • A fourth-order cumulant-based DOA estimation method is presented, considering contradictions between direction finding precision and phase ambiguity in using non-uniform linear array to estimate the Direction Of Arrival (DOA). The new algorithm uses baseline ratio to solve ambiguity, and the constrain that the length of the displacement vectors joining the reference sensors must be less than half-wavelength of the signal is not need, thus accuracy of direction finding is effectively improved. According to the tripartite relationship among steering vector, the eigenvalues of the cumulant matrices and the eigenvectors corresponding to the eigenvalues, the phase differences of each baselines and the signals are automatically paired in the algorithm. The performance of the algorithm is effectively demonstrated with simulation.
  • loading
  • Schmidt R O. Multiple emitter location and signal parameter estimation[J].IEEE Transactions on Antennas and Propagation.1986, 34(3):276-280[2]Liu Tsung-hsien and Mendel J M. Azimuth and elevation direction finding using arbitrary array geometries[J].IEEE Transactions on Signal Processing.1998, 46(7):2061-2065[3]Dogan M C and Mendel J M. Applications of cumulants to array processing-Part I: aperture extension and array calibration[J].IEEE Transactions on Signal Processing.1995, 43(5):1200-1216[4]龚享铱, 袁俊泉, 等.基于相位干涉仪数组多组解模糊的波达角估计算法研究[J].电子与信息学报.2006, 28(1):55-59浏览Gong X Y and Yuan J Q, et al.. A multi-pare unwrap ambiguity of interferometer array for estimation of direction of arrival[J].Journal of Electronics Information Technology.2006,28(1):55-59[5]周亚强, 皇甫堪. 噪扰条件下数字式多基线相位干涉仪解模糊问题. 通信学报, 2005, 26(8): 16-21.[6]Zhou Y Q and Huangfu K. Solving ambiguity problem[7]of digitized multi-baseline interferometer under noisycircumstance. Journal on Communications, 2005, 26(8): 16-21.[8]Gazzah H and Abed-Meraim K. Optimum ambiguity-free directional and omnidirectional planar antenna arrays for DOA estimation[J].IEEE Transactions on Signal Processing.2009, 57(10):3942-3953[9]李旭, 蒋德富. MUSIC算法在交叉干涉仪测向中的应用[J]. 现代雷达, 2009, 31(10): 55-59.Li Xu and Jiang De-fu. Application of MUSIC algorithm to cross interferometer direction finding[J]. Modern Radar, 2009, 31(10): 55-59.[10]司伟建, 初萍, 孙圣和. 超宽频带测向解模糊方法研究[J].弹箭与制导学报, 2009, 29(2): 45-48.Si Wei-jian, Chu Ping, and Sun Sheng-he. Study on the methods of solving direction finding ambiguity in very wide band[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(2): 45-48.[11]Willett P K. Modulo conversion method for estimating the direction of arrival [J].IEEE Transactions on Aerospace and Electronic Systems.2000, 36(4):1391-1396[12]王永良, 陈辉. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 390-411.[13]Wang Yong-liang and Chen Hui. Spatial Spectrum Estimation Theory and Algorithms[M]. Beijing: TsingHua University Press, 2004: 390-411.[14]Liang Jun-li. Joint azimuth and elevation direction finding using cumulant[J].IEEE Sensors Journal.2009, 9(4):390-398
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3825) PDF downloads(1268) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return