Advanced Search
Volume 33 Issue 1
Feb.  2011
Turn off MathJax
Article Contents
Gao Qiang-Ye, Zhou Jian-Jiang, Cao Qun-Sheng. Research and Application to Electromagnetic Scattering of Conformal MRTD Method Based on Daubechies Scaling Functions[J]. Journal of Electronics & Information Technology, 2011, 33(1): 136-141. doi: 10.3724/SP.J.1146.2010.00271
Citation: Gao Qiang-Ye, Zhou Jian-Jiang, Cao Qun-Sheng. Research and Application to Electromagnetic Scattering of Conformal MRTD Method Based on Daubechies Scaling Functions[J]. Journal of Electronics & Information Technology, 2011, 33(1): 136-141. doi: 10.3724/SP.J.1146.2010.00271

Research and Application to Electromagnetic Scattering of Conformal MRTD Method Based on Daubechies Scaling Functions

doi: 10.3724/SP.J.1146.2010.00271
  • Received Date: 2010-03-23
  • Rev Recd Date: 2010-09-06
  • Publish Date: 2011-01-19
  • In order to reduce the staircasing error of Yees leap-frog meshing and accurately model three- dimensional curved conducting objects, a new Conformal MultiResolution Time-Domain (CMRTD) method based on Daubechies scaling functions is proposed by combining the MultiResolution Time-Domain (MRTD) algorithm with the Conformal Finite-Difference Time-Domain (CFDTD) algorithm. This paper puts forward to decompose the MRTD update equation based on Daubechies scaling functions into a linear combination of several conventional Finite-Difference Time-Domain (FDTD) update equations. Then locally conformal technology is applied to the FDTD decomposition equation on the innermost loop. Finally, all decomposition equations are linearly combined into the CMRTD result. Simulation results show that CMRTD can not only preserve MRTDs advantages of saving of computational resources and high computational efficiency, but also enhance computational precision obviously.
  • loading
  • Krumpholz M and Katehi L. MRTD: new time-domain schemes based on multiresolution analysis [J].IEEE Transactions on Microwave Theory and Techniques.1996, 44(4):555-571[2]Taflove A and Hagness S C. Computational Electrodynamics The Finite-Difference Time-Domain Method (3rd Edition) [M]. MA: Artech House, 2005: 51-80.[3]Cheong Y W, Lee Y M, and Ra K H, et al.. Wavelet-Galerkin scheme of time-dependent inhomogeneous electro-magnetic problems [J].IEEE Microwave and Guided Wave Letters.1999, 9(8):297-299[4]Fujii M and Hoefer W J R. Dispersion of time domain wavelet Galerkin method based on Daubechies compactly supported scaling functions with three and four vanishing moments [J].IEEE Microwave and Guided Wave Letters.2000, 10(4):125-127[5]Chen Yin-chao, Cao Qun-sheng, and Mittra R. Multiresolution Time Domain Scheme for Electromagnetic Engineering [M]. NJ: Wiley, 2005: 238-296.[6]姜宇,于少鹏,高红友. 基于Daubechies小波的MRTD在电磁散射中的应用[J]. 光学精密工程,2008, 16(10): 2014-2019.Jiang Yu, Yu Shao-peng, and Gao Hong-you. Application of Daubechies-wavelet-based MultiResolution Time Domain to electromagnetic scattering [J]. Optics and Precision Engneering, 2008, 16(10): 2014-2019.[7]代少玉,吴振森. 时域小波Galerkin法在有耗地面与任意目标复合散射中的应用[J]. 物理学报,2008, 57(12): 7635-7640.Dai Shao-yu and Wu Zhen-sen. Application of wavelet- Galerkin time domain method in the composite scattering of target and lossy ground [J]. Acta Physica Sinica, 2008, 57(12): 7635-7640.[8]Jiang Yu, Yu Shao-peng, and Gao Hong-you, et al.. Application of Daubechies-wavelet based MRTD schemes to electromagnetic scattering [C]. IEEE International Conference on Industrial Informatics, INDIN 2008, Daejeon, Korea, 2008: 623-626.[9]Gao Qiang-ye, Cao Qun-sheng, and Zhou Jian-jiang. Application of total-field/scattered-field technique to 3D-MRTD scattering scheme [C]. 2009 International Forum on Information Technology and Applications, Chengdu, China, 2009, 1: 359-362.[10]高强业,周建江,曹群生. MRTD方法的色散特性分析和电磁散射应用[J]. 南京航空航天大学学报,2010, 42(2): 191-197.Gao Qiang-ye, Zhou Jian-jiang, and Cao Qun-sheng. Analysis of dispersion properties and electromagnetic scattering applications for the MRTD method [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(2): 191-197.[11]Daubechies I. Ten Lectures on Wavelets [M]. PA: SIAM, 1992: 194-202.[12]Zhu Xian-yang, Dogaru T, and Carin L. Analysis of the CDF biorthogonal MRTD method with application to PEC targets [J].IEEE Transactions on Microwave Theory and Techniques.2003, 51(9):2015-2022[13]Dey S and Mittra R. A locally conformal Finite-Difference Time-Domain (FDTD) algorithm for modeling three- dimensional perfectly conducting objects [J].IEEE Microwave and Guided Wave Letters.1997, 7(9):273-275[14]Li Qing-liang, Dong Hui, and Tang Wei, et al.. A simplified CFDTD algorithm for scattering analysis [C]. 2003 6th International Symposium on Antennas and propagation and EM Proceedings, Beijing, China, 2003: 404-407.[15]Sha Wei, Wu Xian-liang, and Huang Zhi-xiang, et al.. A new conformal FDTD(2,4) scheme for modeling three- dimensional curved perfectly conducting objects [J].IEEE Microwave and Wireless Components Letters.2008, 18(3):149-151[16]Du Hong. Mie-scattering calculation [J].Applied Optics.2004, 43(9):1951-1956[17]Gedney S D. An anisotropic perfectly matched layer- absorbing medium for the truncation of FDTD lattices [J].IEEE Transactions on Antennas and Propagation.1996, 44(12):1630-1639[18]Woo A C, Wang H T G, and Schuh M J, et al.. Benchmark radar targets for the validation of computational electromagnetics programs [J].IEEE Antennas and Propagation Magazine.1993, 35(1):84-89
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3708) PDF downloads(652) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return