Advanced Search
Volume 32 Issue 11
Dec.  2010
Turn off MathJax
Article Contents
Zhang Jun-Gen, Ji Hong-Bing, Cai Shao-Xiao. Gaussian Particle JPDA Filter Based Multi-target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2686-2690. doi: 10.3724/SP.J.1146.2009.01549
Citation: Zhang Jun-Gen, Ji Hong-Bing, Cai Shao-Xiao. Gaussian Particle JPDA Filter Based Multi-target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2686-2690. doi: 10.3724/SP.J.1146.2009.01549

Gaussian Particle JPDA Filter Based Multi-target Tracking

doi: 10.3724/SP.J.1146.2009.01549
  • Received Date: 2009-12-04
  • Rev Recd Date: 2010-06-25
  • Publish Date: 2010-11-19
  • In multi-target tracking, aiming at the data association problem that arises due to indistinguishable measurements in the presence of clutter, and the curse of dimensionality that arises due to the increased size of the state-space associated with multiple targets, a novel algorithm based on Gaussian Particle Joint Probabilistic Data Association Filter (GP-JPDAF) is proposed, which introduces Gaussian Particle Filtering (GPF) concept to the JPDA framework. For each of the targets, the marginal association probabilities are approximated with Gaussian particles rather than Gaussians in the JPDAF. Moreover, GPF is utilized for approximating the prediction and update distributions. Finally, the proposed method is applied to passive multi-sensor multi-target tracking. Simulation results show that the method can obtain better tracking performance than Monte Carlo JPDAF (MC -JPDAF).
  • loading
  • Bar-Shalom Y and Li X R. Multitarget-Multisensor Tracking: Principles and Techniques[M]. Storrs: YBS Publishing, 1995.[2]Musicki D and Suvorova S . Tracking in clutter using IMM- IPDA-based algorithms[J].IEEE Transactions on Aerospace and Electronic Systems.2008, 44(1):111-126[3]潘泉, 叶西宁, 张洪才. 广义概率数据关联算法[J].电子学报.2005, 33(3):467-472[4]Karlsson R and Gustafsson F. Monte Carlo data association for multiple target tracking[C]. Proceedings of the IEE Seminar on Target Tracking: Algorithms and Applications, Enschede, Netherlands, 2001: 13/1-13/5.[5]Vermaak J, Godsill S J, and Perez P. Monte Carlo filtering for multi-target tracking and data association[J].IEEE Transactions on Aerospace and Electronic Systems.2005, 41(1):309-332[6]Ekman M. Particle filters and data association for multi-target tracking[C]. 2008 11th International Conference on Information Fusion, Cologne, Germany, July 2008: 1-8.[7]Pasula H, Russell S J, Ostland M, and Ritov Y. Tracking many objects with many sensors[C]. Proc. Int. Joint Conf. Artif. Intell., Stock-holm, Sweden, 1999: 1160-1171.[8]Oh S, Russell S, and Sastry S. Markov chain Monte Carlo data association for multi-target tracking[J].IEEE Transactions on Automatic Control.2009, 54(3):481-497[9]Kotecha J H and Djuric P M . Gaussian particle filtering[J].IEEE Transactions on Signal Processing.2003, 51(10):2592-2601[10]Zhang Zhi-qiang, Wu Jian-kang, and Huang Zhi-pei. Wearable sensors for realtime accurate hip angle estimation[C]. 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, 2008: 2932-2937.[11]Cappe O, Godsill S J, and Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE.2007, 95(5):899-924
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3919) PDF downloads(1697) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return