姚红革, 齐华, 郝重阳. 复杂情形下目标跟踪的自适应粒子滤波算法[J].电子与信息学报.2009, 31(2):275-279浏览Yao H G, Qi H, and Hao C Y. Visual target tracking based on the adaptive particle filter in the complex situation [J].Journal of Electronics Information Technology.2009, 31(2):275-279[2]张涛, 蔡灿辉. 基于多特征Mean Shift的人脸跟踪算法[J].电子与信息学报.2009, 31(8):1816-1820浏览Zhang T and Cai C H. A face tracking algorithm based on multiple feature mean shift [J].Journal of Electronics Information Technology.2009, 31(8):1816-1820[3]Maggio E and Cavallaro A. Accurate appearance based bayesian tracking for maneuvering targets [J].Computer Vision and Image Understanding.2009, 113:544-555[4]王永忠, 梁彦, 赵春晖. 基于多特征自适应融合的核跟踪方法[J]. 自动化学报, 2008, 34(1): 393-399.[5]Wang Y Z, Liang Y, and Zhao C H. Kernel-based tracking based on adaptive fusion of multiple cues [J].Acta Automatica Sinica.2008, 34(4):393-399[6]Zhang K, Kwok J T, and Tang M. Accelerate convergence using dynamic mean shift[C]. Proceedings of the 9th European Conference on Computer Vision. New York, USA, 2006: 257-268.[7]Fashing M and Tomasi C. Mean shift is a bound optimization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, 27(3):471-474[8]Shen C and Brooks M J. A fast global kernel density mode seeking with application to localization and tracking[C]. Proceedings of IEEE International Conference on Computer Vision. Los Alamitos, 2005: 1516-1523.[9]Yin Zhao-zheng and Collins R T. Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Anchorage, USA, 2008: 1-8.[10]Elgammal A and Duraiswami R. Probabilistic tracking in joint feature-spatial spaces[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C, USA, 2004: 790-797.[11]Comaniciu D and Meer P. Kernel-based object tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003, 25(5):564-577[12]Carreira Perpinan M A. Acceleration Strategies for Gaussian Mean shift image segmentation[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, 2006: 543-549.
|