Advanced Search
Volume 32 Issue 11
Dec.  2010
Turn off MathJax
Article Contents
Zhou Bin, Wang Jun-Zheng, Shen Wei. Fast Object Tracking with Global Kernel Density Seeking[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2680-2685. doi: 10.3724/SP.J.1146.2009.01543
Citation: Zhou Bin, Wang Jun-Zheng, Shen Wei. Fast Object Tracking with Global Kernel Density Seeking[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2680-2685. doi: 10.3724/SP.J.1146.2009.01543

Fast Object Tracking with Global Kernel Density Seeking

doi: 10.3724/SP.J.1146.2009.01543
  • Received Date: 2009-12-01
  • Rev Recd Date: 2010-05-25
  • Publish Date: 2010-11-19
  • An object tracking algorithm with global kernel density seeking is proposed to avoid local probability mode in mean shift tracking process. Firstly, a monotonically decreasing sequence of bandwidths is obtained according to the object scale. At the first bandwidth, a maximum probability can be found with mean shift, and the next iteration loop started at the previous convergence location. Finally, the best density mode is obtained at the optimal bandwidth. In the convergence process, with the smoothness effect of the large bandwidth, the compact of the local probability mode is avoided, and the precise position of the object can be found with the optimal bandwidth, which is similar to the object scale. To speed up the convergence, Over-Relaxed strategy is introduced to enlarge the step size. Under the convergence rule, the correlation coefficient is used to adopt the learning rate. The experimental results prove that the proposed tracker with global kernel density seeking is robust in high-speed object tracking, and performs well in occlusions. The adaptive Over-Relaxed strategy is effective to lower the convergence iterations by enlarging the step size.
  • loading
  • 姚红革, 齐华, 郝重阳. 复杂情形下目标跟踪的自适应粒子滤波算法[J].电子与信息学报.2009, 31(2):275-279浏览Yao H G, Qi H, and Hao C Y. Visual target tracking based on the adaptive particle filter in the complex situation [J].Journal of Electronics Information Technology.2009, 31(2):275-279[2]张涛, 蔡灿辉. 基于多特征Mean Shift的人脸跟踪算法[J].电子与信息学报.2009, 31(8):1816-1820浏览Zhang T and Cai C H. A face tracking algorithm based on multiple feature mean shift [J].Journal of Electronics Information Technology.2009, 31(8):1816-1820[3]Maggio E and Cavallaro A. Accurate appearance based bayesian tracking for maneuvering targets [J].Computer Vision and Image Understanding.2009, 113:544-555[4]王永忠, 梁彦, 赵春晖. 基于多特征自适应融合的核跟踪方法[J]. 自动化学报, 2008, 34(1): 393-399.[5]Wang Y Z, Liang Y, and Zhao C H. Kernel-based tracking based on adaptive fusion of multiple cues [J].Acta Automatica Sinica.2008, 34(4):393-399[6]Zhang K, Kwok J T, and Tang M. Accelerate convergence using dynamic mean shift[C]. Proceedings of the 9th European Conference on Computer Vision. New York, USA, 2006: 257-268.[7]Fashing M and Tomasi C. Mean shift is a bound optimization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, 27(3):471-474[8]Shen C and Brooks M J. A fast global kernel density mode seeking with application to localization and tracking[C]. Proceedings of IEEE International Conference on Computer Vision. Los Alamitos, 2005: 1516-1523.[9]Yin Zhao-zheng and Collins R T. Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Anchorage, USA, 2008: 1-8.[10]Elgammal A and Duraiswami R. Probabilistic tracking in joint feature-spatial spaces[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington, D.C, USA, 2004: 790-797.[11]Comaniciu D and Meer P. Kernel-based object tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003, 25(5):564-577[12]Carreira Perpinan M A. Acceleration Strategies for Gaussian Mean shift image segmentation[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, 2006: 543-549.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3735) PDF downloads(1038) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return