Citation: | Zhang Shi-Qing, Li Le-Min, Zhao Zhi-Jin. Speech Emotion Recognition Based on an Improved Supervised Manifold Learning Algorithm[J]. Journal of Electronics & Information Technology, 2010, 32(11): 2724-2729. doi: 10.3724/SP.J.1146.2009.01430 |
atural speech by combining prosody and voice quality features[C]. Advances in Neural Networks - ISNN 2008, Springer, 2008, Lecture Notes in Computer Science, 5264: 457-464.[18]Zhao Y, Zhao L, and Zou C, et al.. Speech emotion recognition using modified quadratic discrimination function[J].Journal of Electronics (China.2008, 25(6):840-8.
Picard R. Affective Computing[M]. MIT Press, Cambridge, MA, 1997: 1-24.[2]Jones C and Deeming A. Affective human-robotic interaction[C]. Affect and Emotion in Human-Computer Interaction, Springer, 2008, Lecture Notes in Computer Science, 4868: 175-185.[3]Morrison D, Wang R, and De Silva L C. Ensemble methods for spoken emotion recognition in call-centres[J].Speech Communication.2007, 49(2):98-112[4]Picard R. Robots with emotional intelligence[C]. 4th ACM/ IEEE international conference on Human robot interaction, California, 2009: 5-6.[5]Errity A and McKenna J. An investigation of manifold learning for speech analysis[C]. 9th International Conference on Spoken Language Processing (ICSLP'06), Pittsburgh, PA, USA, 2006: 2506-2509.[6]Goddard J, Schlotthauer G, and Torres M, et al.. Dimensionality reduction for visualization of normal and pathological speech data[J].Biomedical Signal Processing and Control.2009, 4(3):194-201[7]Yu D. The application of manifold based visual speech units for visual speech recognition[D]. [Ph.D.dissertation], Dublin City University, 2008.[8]Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].Science.2000, 290(5500):2323-2326[9]Tenenbaum J B, Silva Vd, and Langford J C. A global geometric framework for nonlinear dimensionality reduction[J].Science.2000, 290(5500):2319-2323[10]Jolliffe I T. Principal Component Analysis[M]. New York: Springer, 2002: 150-165.[11]De Ridder D, Kouropteva O, and Okun O, et al.. Supervised locally linear embedding[C]. Artificial Neural Networks and Neural Information Processing-ICANN/ICONIP-2003, Springer, 2003, Lecture Notes in Computer Science, 2714, 333-341.[12]Liang D, Yang J, and Zheng Z, et al.. A facial expression recognition system based on supervised locally linear embedding[J].Pattern Recognition Letters.2005, 26(15):2374-2389[13]Pang Y, Teoh A, and Wong E, et al.. Supervised Locally Linear Embedding in face recognition[C]. International Symposium on Biometrics and Security Technologies, Islamabad, 2008: 1-6.[14]Platt J C. Fastmap, MetricMap, and Landmark MDS are all Nystrom algorithms[C]. 10th International Workshop on Artificial Intelligence and Statistics, Barbados, 2005: 261-268.[15]Aha D, Kibler D, and Albert M. Instance-based learning algorithms[J]. Machine Learning, 1991, 6(1): 37-66.[16]赵力, 将春辉, 邹采荣等. 语音信号中的情感特征分析和识别的研究[J].电子学报.2004, 32(4):606-609Zhao Li, Jiang Chun-hui, and Zou Cai-rong, et al.. A study on emotional feature analysis and recognition in speech[J]. Acta Electronica Sinica, 2004, 32(4): 606-609.[17]Zhang S. Emotion recognition.
|