Zhu Shi-Xin, Ding Jian. Mass Formulas for Cyclic Codes of Lengthpk over the Ring Fpm+uFpm[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2101-2105. doi: 10.3724/SP.J.1146.2009.01325
Citation:
Zhu Shi-Xin, Ding Jian. Mass Formulas for Cyclic Codes of Lengthpk over the Ring Fpm+uFpm[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2101-2105. doi: 10.3724/SP.J.1146.2009.01325
Zhu Shi-Xin, Ding Jian. Mass Formulas for Cyclic Codes of Lengthpk over the Ring Fpm+uFpm[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2101-2105. doi: 10.3724/SP.J.1146.2009.01325
Citation:
Zhu Shi-Xin, Ding Jian. Mass Formulas for Cyclic Codes of Lengthpk over the Ring Fpm+uFpm[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2101-2105. doi: 10.3724/SP.J.1146.2009.01325
Cyclic codes over the ringR=Fpm+uFpm can be seen as the ideals of R[x]/xpk-1. Based on the studing of ideals of R[x]/xpk-1, a unique method of representing cyclic codes of lengthpk and their mass formulas over the ringFpm+uFpm are provided. For the cyclic self-dual codes of lengthpk over the ring Fpm+uFpm, their structures and mass formulas are given.
Bachoc C. Application of coding theory to the construction of modular lattices [J].Journal of Combinational Theory Series A.1997, 78(1):92-119[2]Gulliver T A and Harada M. Codes over F3+uF3 and improvements to the bounds on ternary linear codes [J].Designs, Codes and Cryptography.2001, 22(1):89-96[3]Gaborit P. Mass formula for self-dual codes over Z4 and Fq+uFq rings [J].IEEE Transactions on Information Theory.1996, 42(4):1222-1228[4]Qian J F, Zhang L N, and Zhu S X. Cyclic codes over Fq+uFq++uk-1Fq [J]. IEICE Transactions on Fundamentals, 2005, 88(3): 795-797.[5]Dinh H Q. Constacyclic codes of length over 2s galois extension rings of F2+uF2 [J].IEEE Transactions on Information Theory.2009, 55(4):1730-1740[6]李平,朱士信. 环Fq+uFq 上任意长度的循环码[J]. 中国科技大学学报,2008, 38(12): 1392-1396.Li Ping and Zhu S X. Cyclic codes of arbitrary lengths over the ring Fq+uFq [J]. Journal of University of Science and Technology of China, 2008, 38(12): 1392-1396.[7]Kiah H M, Leung K H, and Ling S. Cyclic codes over GR(p2,m) of length pk [J].Finite Fields and their Applications.2008, 14(3):834-846[8]Dougherty S T and Ling S. Cyclic codes over Z4 of even length[J].Designs, codes and cryptography.2006, 39(2):127-153