Advanced Search
Volume 32 Issue 9
Oct.  2010
Turn off MathJax
Article Contents
Yang Dan, Li Bo, Zhao Hong. An Adaptive Algorithm for Robust Visual Codebook Generation and Its Natural Scene Categorization Application[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2139-2144. doi: 10.3724/SP.J.1146.2009.01323
Citation: Yang Dan, Li Bo, Zhao Hong. An Adaptive Algorithm for Robust Visual Codebook Generation and Its Natural Scene Categorization Application[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2139-2144. doi: 10.3724/SP.J.1146.2009.01323

An Adaptive Algorithm for Robust Visual Codebook Generation and Its Natural Scene Categorization Application

doi: 10.3724/SP.J.1146.2009.01323
  • Received Date: 2009-10-12
  • Rev Recd Date: 2010-04-30
  • Publish Date: 2010-09-19
  • This paper describes a novel optimization framework for visual codebook generation. Firstly, the Condition Number (CN) is applied to evaluate the stability of initial visual features, and the well conditioned features are preserved by eliminating the bad ones. At the mean time, an adaptive algorithm to generate low-dimensional visual words is proposed by studying the relationship between clustering and dimension-reducing. In order to overcome the popular LBG codebook design algorithm suffers from local optimality and is sensitive to the initial solution, a parameter called neighborhood-support for each feature is calculated according to clustering structure, which is used to select initial visual words adaptively. Finally, the rational distortion function is redefined using Silhouette. Compared with traditional algorithm, the presented algorithm has excellent properties at simultaneous clustering and dimension reduction, good robustness and adaptive optimization. A good performance (73.46% classification rate) of application this method to 13-Scene classification is obtained by using Probabilistic Latent Semantic Analysis (PLSA).
  • loading
  • Cummins M and Newman P. FAB-MAP: Probabilistic localization and mapping in the space of appearance[J].The International Journal of Robotics Research.2008, 27(6):647-665[2]Zhong W, Qifa K, Michael I, and Jian S. Bundling features for large-scale partial-duplicate web image search[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009: 25-32.[3]李志欣, 施智平, 李志清, 史忠植. 图像检索中语义映射方法综述[J]. 计算机辅助设计与图形学学报, 2008, 20(8): 1085-1096.Li Zhi-xin, Shi Zhi-ping, Li Zhi-qing, and Shi Zhong-zhi. A survey of semantic mapping in image retrieval[J].Journal of Computer Aided Design Computer Graphics.2008, 20(8):1085-1096[4]石跃祥, 朱东辉, 蔡自兴, Benhabib B. 图像语义特征的抽取方法及其应用[J].计算机工程.2007, 33(19):177-179Shi Yue-xiang, Zhu Dong-hui, Cai Zi-xing, and Benhabib B. Extraction of image semantic attributes and its application[J]. Computer Engineering, 2007, 33(19): 177-179.[5]Rasiwasia N and Vasconcelos N. Scene classification with low-dimensional semantic spaces and weak supervision[C]. IEEE Conference on Computer Vision and Pattern Recognition, Alaska, 2008: 1-6.[6]Bosch A, Zisserman A, and Munoz X. Scene classification via pLSA [C]. European Conference on Computer Vision, Austria, 2006: 517-530.[7]Li Fei-fei and Perona P. A Bayesian hierarchical model for learning natural scene categories[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005: 524-531.[8]Lazebnik S, Schmid C, and Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C]. IEEE Conference on Computer Vision and Pattern Recognition, New York, 2006, 2: 2169-2178.[9]Kim S and Kweon I S. Simultaneous classification and visual word selection using entropy-based minimum description length[C]. IEEE International Conference of Pattern Recognition, Hong Kong, 2006: 650-653.[10]Liu Yang, Rong Jin, Sukthankar R, and Jurie F. Unifying discriminative visual codebook generation with classifier training for object category recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Alaska, 2008: 1-8.[11]Farquhar J, Szedmak S, Meng H, and Taylor J S. Improving bags-of-keypoints image categorization[R]. Tech report, University of Southampton, 2005.[12]Moosmann F, Triggs B, and Jurie F. Fast discriminative visual codebooks using randomized clustering forests[C]. In Neural Information Processing Systems, Vancouver, 2006: 985-992.[13]Jiang Yu-gang, Chong-Wah N, and Yang Jun. Towards optimal bag-of-features for object categorization and semantic video retrieval[C]. ACM International Conference on Image and Video Retrieval, New York, 2007: 494-501.[14]Linde Y, Buzo A, and Gray R M. An algorithm for vector quantizer design[J].IEEE Transactions on Communications.1980, 28(1):84-95[15]Kenney C, Manjunath B S, and Zuliani M. A condition number for point matching with application to registration and post-registration error estimation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003, 25(11):1437-1454[16]马瑞,王家廞,宋亦旭. 基于局部线性嵌入(LLE)非线性降维的多流形学习[J]. 清华大学学报(自然科学版), 2008, 48(4): 582-585.Ma Rui, Wang Jia-xin, and Song Yi-xu. Multi-manifold learning using locally linear embedding (LLE) nonlinear dimensionality reduction[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(4): 582-585.[17]Wang Jing, Zhang Zhen-yue, and Zha Hong-yuan. Adaptive manifold learning[C]. Advances in Neural Information Processing Systems, Cambridge, 2005: 1473-1480.[18]Frey B J and Dueck D. Clustering by passing messages between data points[J].Science.2007, 315:972-976
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3658) PDF downloads(911) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return