Advanced Search
Volume 32 Issue 9
Oct.  2010
Turn off MathJax
Article Contents
Chen Jian-Jun, Aa Guo-Cheng, ZHang Suo-Fei, Wu Zhen-Yang. Small Target Tracking Based on Histogram Interpolation Mean Shift[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2119-2125. doi: 10.3724/SP.J.1146.2009.01245
Citation: Chen Jian-Jun, Aa Guo-Cheng, ZHang Suo-Fei, Wu Zhen-Yang. Small Target Tracking Based on Histogram Interpolation Mean Shift[J]. Journal of Electronics & Information Technology, 2010, 32(9): 2119-2125. doi: 10.3724/SP.J.1146.2009.01245

Small Target Tracking Based on Histogram Interpolation Mean Shift

doi: 10.3724/SP.J.1146.2009.01245
  • Received Date: 2009-09-22
  • Rev Recd Date: 2010-04-02
  • Publish Date: 2010-09-19
  • Small scale target tracking is one of the primary difficulties in visual tracking. Two major problems in mean shift small target tracking algorithm are presented in this paper, namely tracking interrupt and target losing. To tackle these problems, the Parzen windows density estimation method is modified to interpolate the histogram of the target candidate. The Kullback-Leibler distance is employed as a new similarity measure function of the target model and the target candidate. And its corresponding weight computation and new location expressions are derived. On the basis of these works, a new mean shift algorithm is proposed for small target tracking. Several tracking experiments for real world video sequences show that the proposed algorithm can track the target successively and accurately. It can successfully track very small targets with only 612 pixels.
  • loading
  • [1] Kaewtrakulpong P and Bowden R. A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes [J].Image and Vision Computing.2003, 21(10):913-929 [2] Han B and Davis L S. Probabilistic fusion-based parameter estimation for visual tracking [J].Computer Vision and Image Understanding.2009, 113(4):435-445 [3] Formont S, Laude V, and Refregier P. Small target tracking on image sequence using nonlinear optimal filtering [C]. Signal and Data Processing of Small Targets, 1995. San Diego, CA, USA, SPIE, 1995, 2561: 299-307. [4] Wang L, Hu S, and Zhang X. Detecting and tracking of small moving target under the background of sea level [C]. The 9th International Conference on Signal Processing, ICSP'2008, Beijing, China, 2008: 989-992. [5] Fukunaga K and Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition [J].IEEE Transactions on Information Theory.1975, 21(1):32-40 [6] Yizong C. Mean shift, mode seeking, and clustering [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1995, 17(8):790-799 [7] Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003, 25(5):564-577 [8] Bajramovic F, Gr C, and Denzler J. Efficient combination of histograms for real-time tracking using mean-shift and trust-region optimization [C]. The 27th Symposium on German Association for Pattern Recognition, DAGM2005, Vienna, Austria, Springer Verlag, 2005, 3663: 254-261. [9] Li P. An Adaptive Binning Color Model for Mean Shift Tracking [J].IEEE Transactions on Circuits and Systems for Video Technology.2008, 18(9):1293-1299 [10] Hongxia C and Wang K. Target tracking based on mean shift and improved kalman filtering algorithm [C]. IEEE International Conference on Automation and Logistics, ICAL '09. Shenyang, China, 2009: 808-812. [11] Li S X, Chang H X, and Zhu C F. Adaptive pyramid mean shift for global real-time visual tracking [J].Image and Vision Computing.2010, 28(3):424-437 [12] Yang C, Duraiswami R, and Davis L. Efficient mean-shift tracking via a new similarity measure [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR '2005. San Diego, CA, United states, 2005: 176-183. [13] Parzen E. On estimation of a probability density function and mode [J].Annals of Mathematical Statistics.1962, 33(3):1065-1076 [14] Shen H and Yan X. Probability density estimation over evolving data streams using tilted Parzen window [C]. IEEE Symposium on Computers and Communications, ISCC'2008, Marrakech, 2008: 585-589. [15] CAVIAR: EU funded project, IST 2001 37540, URL:http: //homepages.inf.ed.ac.uk/rbf/CAVIAR/(2004).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3637) PDF downloads(1088) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return