[1] Kaewtrakulpong P and Bowden R. A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes [J].Image and Vision Computing.2003, 21(10):913-929 [2] Han B and Davis L S. Probabilistic fusion-based parameter estimation for visual tracking [J].Computer Vision and Image Understanding.2009, 113(4):435-445 [3] Formont S, Laude V, and Refregier P. Small target tracking on image sequence using nonlinear optimal filtering [C]. Signal and Data Processing of Small Targets, 1995. San Diego, CA, USA, SPIE, 1995, 2561: 299-307. [4] Wang L, Hu S, and Zhang X. Detecting and tracking of small moving target under the background of sea level [C]. The 9th International Conference on Signal Processing, ICSP'2008, Beijing, China, 2008: 989-992. [5] Fukunaga K and Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition [J].IEEE Transactions on Information Theory.1975, 21(1):32-40 [6] Yizong C. Mean shift, mode seeking, and clustering [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1995, 17(8):790-799 [7] Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2003, 25(5):564-577 [8] Bajramovic F, Gr C, and Denzler J. Efficient combination of histograms for real-time tracking using mean-shift and trust-region optimization [C]. The 27th Symposium on German Association for Pattern Recognition, DAGM2005, Vienna, Austria, Springer Verlag, 2005, 3663: 254-261. [9] Li P. An Adaptive Binning Color Model for Mean Shift Tracking [J].IEEE Transactions on Circuits and Systems for Video Technology.2008, 18(9):1293-1299 [10] Hongxia C and Wang K. Target tracking based on mean shift and improved kalman filtering algorithm [C]. IEEE International Conference on Automation and Logistics, ICAL '09. Shenyang, China, 2009: 808-812. [11] Li S X, Chang H X, and Zhu C F. Adaptive pyramid mean shift for global real-time visual tracking [J].Image and Vision Computing.2010, 28(3):424-437 [12] Yang C, Duraiswami R, and Davis L. Efficient mean-shift tracking via a new similarity measure [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR '2005. San Diego, CA, United states, 2005: 176-183. [13] Parzen E. On estimation of a probability density function and mode [J].Annals of Mathematical Statistics.1962, 33(3):1065-1076 [14] Shen H and Yan X. Probability density estimation over evolving data streams using tilted Parzen window [C]. IEEE Symposium on Computers and Communications, ISCC'2008, Marrakech, 2008: 585-589. [15] CAVIAR: EU funded project, IST 2001 37540, URL:http: //homepages.inf.ed.ac.uk/rbf/CAVIAR/(2004).
|