Shao Fei, Wu Chun, Wang Li-feng. Research on Cross-layer Congestion Control Strategy Based on Multi-agent Reinforcement Learning in Ad hoc Network[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1520-1524. doi: 10.3724/SP.J.1146.2009.01092
Citation:
Shao Fei, Wu Chun, Wang Li-feng. Research on Cross-layer Congestion Control Strategy Based on Multi-agent Reinforcement Learning in Ad hoc Network[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1520-1524. doi: 10.3724/SP.J.1146.2009.01092
Shao Fei, Wu Chun, Wang Li-feng. Research on Cross-layer Congestion Control Strategy Based on Multi-agent Reinforcement Learning in Ad hoc Network[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1520-1524. doi: 10.3724/SP.J.1146.2009.01092
Citation:
Shao Fei, Wu Chun, Wang Li-feng. Research on Cross-layer Congestion Control Strategy Based on Multi-agent Reinforcement Learning in Ad hoc Network[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1520-1524. doi: 10.3724/SP.J.1146.2009.01092
In the paper, the existence of an Nash equilibrium in the network congestion mode induced by MAC layer competition is proved firstly; Secondly, a cross-layer congestion-control mechanism named WCS is proposed based on WOLF-PHC learning strategy. WCS selects a couple of decoupled node as next-hop nodes at routing layer; Meanwhile, sources traffic is spitted and forwarded at MAC layer, which improves the space reusing efficiency of link. Simulation result shows that: without any exchanging information, optimum split-flow point of source node will be sought by WOLF-PHC in order to maximize the network throughput; Furthermore, WOLF-PHC will discover new optimum split-flow point in order to adapt to new network environment.