Advanced Search
Volume 32 Issue 7
Aug.  2010
Turn off MathJax
Article Contents
Wang Zhi, Xu Xiao-bin, Liu Wei-feng, Wen Cheng-lin. Performance Analysis and Comparison of Two Classic Algorithms in Multi-target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(7): 1633-1637. doi: 10.3724/SP.J.1146.2009.00917
Citation: Wang Zhi, Xu Xiao-bin, Liu Wei-feng, Wen Cheng-lin. Performance Analysis and Comparison of Two Classic Algorithms in Multi-target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(7): 1633-1637. doi: 10.3724/SP.J.1146.2009.00917

Performance Analysis and Comparison of Two Classic Algorithms in Multi-target Tracking

doi: 10.3724/SP.J.1146.2009.00917
  • Received Date: 2009-06-23
  • Rev Recd Date: 2009-12-02
  • Publish Date: 2010-07-19
  • There are two primary ways to process multi-target tracking problem. One is data association method, whose deputies are PDA and JPDA. The other is direct method without the data association, whose deputies are random sets theory and GM-PHD. Two representational algorithms are chosen from aforementioned two kinds of methods respectively, that is, JPDA and GM-PHD. Firstly, general analytical forms to evaluate calculation complexity of each algorithm are formulated by analyzing and totaling their major operation steps. Secondly, the calculation complexity of two algorithms is compared through three cases respectively, which are divided on the basis of associated complexity between states and the measurements. Finally, one example, including tracking effect and the running time, is utilized to illustrate the analytical forms of evaluating calculation complexity proposed in this paper.
  • loading
  • 李良群. 信息融合系统中的目标跟踪及数据关联技术研究[D].[博士论文], 西安电子科技大学, 2007.Li Liang-qun. Research on the target tracking and dataassociation techniques with the information fusion system[D].[Ph. D. dissertation], Xidian University, 2007.[2]韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 北京: 清华大学出版社, 2006, 297-303.Han Chong-zhao, Zhu Hong-yan, and Duan Zhan-sheng.Multi-source Information Fusion [M]. Beijing, TsinghuaUniversity Press, 2006: 297-303.[3]李正周, 金钢, 董能力. 基于改进概率数据关联滤波的红外小运动目标跟踪[J].电子与信息学报.2008, 30(4):953-956浏览[4]樊国创, 戴亚平, 许向阳. 基于神经网络的混合双滤波器自适应目标跟踪算法. 火力与指挥控制, 2009, 34(2): 120-123.Fan Guo-chuang, Dai Ya-ping, and Xu Xiang-yang. Neuralnetwork-based hybrid double filters for adaptive targettracking. Fire Control Command Control, 2009, 34(2):120-123.[5]Goodman I, Mahler R, and Nguyen H. Mathematics of DataFusion[M]. Dordrecht: Kluwer Academic Publishers, 1997,Chapter 2, 4-8.[6]徐晓滨, 文成林, 刘荣利. 基于随机集理论的多源信息统一表示与建模方法. 电子学报, 2008, 36(6): 1174-1181.Xu Xiao-bin, Wen Cheng-lin, and Liu Rong-li. The unifiedmethod of describing and modeling multi-source informationbased on random set theory. Acta Electronica Sinica, 2008,36(6): 1174-1181.[7]Mahler R. Multi-target Bayes filtering via first-ordermulti-target moments[J].IEEE Transactions on Aerospace andElectronic System.2003, 39(4):1152-1178[8]Mahler R. An introduction to multi-source multi-targetstatistics and its applications. Technical Monograph.Lockheed Martin, Eagan MN, 2000.[9]Ulmke M, Franken D, and Schmidt M. Missed detectionproblems in the cardinalized probability hypothesis densityfilter. 11th International Conference on Information Fusion.Cologne, 2008: 1-7.[10]Vo Ba-ngu and Ma Wing-kin. A closed-form solution for theprobability hypothesis density filter. 8th InternationalConference on Information Fusion. Philadelphia, 2005:856-863.[11]Zhang Hong-jian, Jing Zhong-liang, and Hu Shi-qiang. Tracksextraction of the probability hypothesis density filter forsurvival targets. Proceedings of the 27th Chinese ControlConference, Kunming, 2008: 343-347.[12]Liu Wei-feng, Han Chong-zhao, Lian Feng, Xu Xiao-bin, andWen Cheng-lin. Multitarget state and track estimation forthe probability hypothesis density filter[J].Journal ofElectronics (China.2009, 26(1):2-12[13]Wen Cheng-lin and Xu Xiao-bin. Random sets in data fusion:a new framework for multi-target tracking. Systems andControl in Aerospace and Astronautics, Harbin, 2006:999-1004.[14]K Chang and Y Bar-shalom. Joint probabilistic dataassociation for multi-target tracking with possibly unresolvedmeasurements and maneuvers[J].IEEE Transactions onAutomatic Control.1984, 29(7):585-594[15]Clark D, Vo Ba-tuong, Vo Ba-Ngu, and Godsill S. Gaussianmixture implementations of probability hypothesis densityfilters for non-linear dynamical models. 2008 IET Seminar onTarget Tracking and Data Fusion: Algorithms andApplications, Birmingham, 2008: 21-28.[16]文成林, 吕冰, 葛泉波. 一种基于分步式滤波的数据融合算法[J]. 电子学报, 2004, 32(8): 1264-1267.Wen Cheng-lin, L Bing, and Ge Quan-bo. A data fusionalgorithm based on filtering step by step. Acta ElectronicaSinica, 2004, 32(8): 1264-1267.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3951) PDF downloads(1029) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return