Advanced Search
Volume 32 Issue 6
Jun.  2010
Turn off MathJax
Article Contents
Jian Fu-sheng, Xu Yue-min, Yin Ze-jie. Research of Multiple Model Particle Filter Tracking Algorithms[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1271-1276. doi: 10.3724/SP.J.1146.2009.00853
Citation: Jian Fu-sheng, Xu Yue-min, Yin Ze-jie. Research of Multiple Model Particle Filter Tracking Algorithms[J]. Journal of Electronics & Information Technology, 2010, 32(6): 1271-1276. doi: 10.3724/SP.J.1146.2009.00853

Research of Multiple Model Particle Filter Tracking Algorithms

doi: 10.3724/SP.J.1146.2009.00853
  • Received Date: 2009-06-05
  • Rev Recd Date: 2009-09-07
  • Publish Date: 2010-06-19
  • An Enhanced Multiple Model Particle Filter(EMMPF) algorithm is presented for maneuvering target tracking. Rather than allocating the particles to the various modes according to mode probabilities as the MMPF, the new algorithm proposes an approach which enables the user to control the number of particles in a certain mode flexibly without interaction between particles of different mode. The estimations of mode and state are calculated respectively, and the posterior probability of each model is updated with the model likelihood function. It is demonstrated that the new algorithm can achieve better performance with less particles, compared with MMPF.
  • loading
  • Blackman S S and Popoli R. Design and Analysis of Modern Tracking System [M]. Norwood MA: Artech House, 1999: 221-252.[2]Blom H A P and?Bloem E A. Exact Bayesian and particle filtering of stochastic hybrid systems[J].IEEE Transactions on Aerospace and Electronic Systems.2007, 43(1):55-70[3]Liang Yan, Wang Zeng-fu, and Cheng Yong-mei, et al.. Estimation of Markov jump systems with mode observation one-step lagged to state measurement [C]. The 10th International Conference on Information Fusion, Qubec City, Canada, 9-12 July 2007: 1-6.[4]Mcginnity S and Irwin G W. Multiple model bootstrap filter for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems.2000, 36(3):1006-1012[5]Driessen H and Boers Y. Efficient particle filter for jump Markov nonlinear systems[J].IEE Proceedings: Radar, Sonar and Navigation.2005, 152(5):323-326[6]Yacine M and Mohand S D. Genetic algorithm combined to IMM approach for tracking highly maneuvering targets[J]. IAENG International Journal of Computer Science, 2008, 35(1): 41-46.[7]刘贵喜, 高恩克, 范春宇. 改进的交互式多模型粒子滤波跟踪算法电子与信息学报[J]..2007, 29(12):2810-2813浏览Liu Gui-xi, Gao En-ke, and Fan Chun-yu. Tracking algorithms based on improved interacting multiple model particle filter[J].Journal of Electronics Information Technology.2007, 29(12):2810-2813[8]Doucet A, Gordon N, and Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J].IEEE Transactions on Signal Processing.2001, 49(3):613-624[9]Caron F, Davy M, and Duflos E, et al.. Particle filtering for multisensor data fusion with switching observation models: Application to land vehicle positioning[J].IEEE Transactions on Signal Processing.2007, 55(6):2703-2719[10]Fredrik G, Niclas B, and Urban F, et al.. Particle filters for positioning, navigation and tracking[J].IEEE Transactions on Signal Processing.2002, 50(2):425-437
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3684) PDF downloads(1412) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return