Advanced Search
Volume 32 Issue 3
Aug.  2010
Turn off MathJax
Article Contents
Lin Xue-hong, Niu Kai, Lin Jia-ru. The Constraint Conditions for LDPC Codes in Cryptosystem[J]. Journal of Electronics & Information Technology, 2010, 32(3): 613-616. doi: 10.3724/SP.J.1146.2009.00160
Citation: Lin Xue-hong, Niu Kai, Lin Jia-ru. The Constraint Conditions for LDPC Codes in Cryptosystem[J]. Journal of Electronics & Information Technology, 2010, 32(3): 613-616. doi: 10.3724/SP.J.1146.2009.00160

The Constraint Conditions for LDPC Codes in Cryptosystem

doi: 10.3724/SP.J.1146.2009.00160
  • Received Date: 2009-02-09
  • Rev Recd Date: 2009-09-25
  • Publish Date: 2010-03-19
  • This paper first presents Belief Propagation (BP) iteration algorithm in LDPC code-based public-key cryptosystems, and develops the necessary condition of private key if the probability of plaintext is equal. Then the necessary and sufficient condition of public key is deduced according to the recursion of BP iteration algorithm. Simulations show that the parameters of private key and public key are correct.
  • loading
  • McEliece R J. A public-key cryptosystem based onalgebraic coding theory. JPL DSN Progress Report. 1978:42-44, 114-116.[2]Gallager R G. Low density parity check codes[J].IRETransactions on Information Theory.1962, 8(1):21-28[3]Skantzos N S, Saad D, and Kabashima Y. Analysis ofcommon attacks in public-key cryptosystems based onlow-density parity-check codes. Physical Review E, 2003, 68056125.[4]Baldi M and Chiaraluce F. Cryptanalysis of a new instanceof McEliece cryptosystem based on QCLDPC codes.IEEE International Symposium on Information Theory (ISIT2007), Nice, France, June 2007: 2591-2595.[5]Otmani A, Tillich J P, and Dallot L. Cryptanalysis of twoMcEliece cryptosystems based on quasi-cyclic codes. FirstInternational Conference on Symbolic Computation andCryptography (SCC2008), Beijing, China, April 2008: 1-17.[6]Fezal A and Sunjiv S. On low density parity check codes forcombined reliability and security. AFRICON 2007,Windhoek, Namibia, Sept. 2007: 1-5.[7]Garey M R and Johnson D S. Computers and Intractability.New York: W. H. Freeman, 1979: 45-76.[8]MacKay D J C. Good error-correcting codes based on verysparse matrice[J].IEEE Transactions on Information Theory.1999, 45(2):399-431
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3410) PDF downloads(693) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return