Advanced Search
Volume 32 Issue 2
Aug.  2010
Turn off MathJax
Article Contents
Mu Jian-chao, Gao Mei-guo, Jiang Chang-yong. Fast Detection Algorithm for the Number of Signal Sources Based on Modified Hung-Turner Projection[J]. Journal of Electronics & Information Technology, 2010, 32(2): 350-354. doi: 10.3724/SP.J.1146.2009.00125
Citation: Mu Jian-chao, Gao Mei-guo, Jiang Chang-yong. Fast Detection Algorithm for the Number of Signal Sources Based on Modified Hung-Turner Projection[J]. Journal of Electronics & Information Technology, 2010, 32(2): 350-354. doi: 10.3724/SP.J.1146.2009.00125

Fast Detection Algorithm for the Number of Signal Sources Based on Modified Hung-Turner Projection

doi: 10.3724/SP.J.1146.2009.00125
  • Received Date: 2009-01-21
  • Rev Recd Date: 2009-07-29
  • Publish Date: 2010-02-19
  • Detection of the number of spatial signals is one of the key issues in array signal processing community. Most of the existing methods for detection of the number of signal sources require the eigenvalues of the sample covariance matrix. In this paper, a Fast Detection Method via Modified Hung-Turner Projection (FDM-MHTP) is proposed to dectect the number of multiple emitters, where a threshold is derived exploiting the asymptotic distribution properties of the estimation errors of the sample covariance matrix. The threshold is utilized to detect the number of signal sources in conjunction with performing Gram-Schmidt(GS) orthogonalization. Without eigenvalue decomposition, the algorithm has good detection performance and low computation complexity. Computer simulation shows the correctness and efficiency of the algorithm.
  • loading
  • Wax M and Kailath T. Detection of signals by information theoretic criteria[J].IEEE Transactions on Acoustics, Speech and Signal Processing.1985, 33(2):387-392[2]Shanh A A and Tufts D W. Determination of the dimension of a signal subspace from short data records[J].IEEE Transactions on Signal Processing.1994, 42(9):2531-2535[3]Ahmad Khodayari-Rostamabad and Valaee S. Information theoretic enumeration and tracking of multiple sources. IEEE Transactions on Acoustics, Speech and Signal Processing, 2007, 55(6): 2765-2773.[4]Huang Lei, Wu Shun-jun, and Li Xia. Reduced-rank MDL method for source enumeration in high-resolution array processing[J].IEEE Transactions on Signal Processing.2007, 55(12):5658-5667[5]Chung Pei-jung, Bohme J F, and Meckelenbrauker C F, et al.. Detection of the number of signals using the benjamini-hochberg procedure[J].IEEE Transactions on Signal Processing.2007, 55(6):2497-2508[6]谢纪岭, 司锡才. 基于协方差矩阵对角加载的信源数估计方法. 系统工程与电子技术, 2008, 30(1): 46-49.Xie Ji-ling and Si Xi-cai. Determining the number of sources based on diagonal loading to the covariance matrix. Systems Engineering and Electronics, 2008, 30(1): 46-49.[7]叶中付, 向利, 徐旭. 基于信息论准则的信源个数估计算法改进. 电波科学学报, 2007, 22(4): 593-598.Ye Zhong-fu, Xiang Li, and Xu Xu. Improvement of source number estimation based on information theoritic criteria. Chinese Journal of Radio Science, 2007, 22(4): 593-598.[8]Simkins D N. Multichannel angle-of-arrival estimation. [Ph.D. dissertation], Stanford University, Stanford, California, 1980.[9]Abramovich Y I, Spencer N K, and Gorokhov A Y. GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[J].IEEE Transactions on Signal Processing.2007, 55(1):20-31[10]王剑, 吴嗣亮, 侯淑娟. 超分辨条件下雷达目标散射点数的估计方法. 电子学报, 2008, 36(6): 1058-1062.Wang Jian, Wu Si-liang, and Hou Shu-juan. Detecting the scatterer number of radar target for SSM super resolution. Acta Electronica Sinica, 2008, 36(6): 1058-1062.[11]Wu Hsien-Tsai, Yang Jar-Ferr, and Chen Fwu-Kuen. Source number estimators using transformed Gerschgorin radii[J].IEEE Transactions on Signal Processing.1995, 43(6):1325-1333[12]Hung E K L and Turner R M. A fast beamforming algorithm for large arrays[J].IEEE Transactions on Aerospace and Electronic Systems.1983, 19(4):598-607[13]肖丹, 顾德仁. GS正交算法中正交化次数的自动确定. 电子科学学刊, 1995, 17(1): 79-85.Xiao Dan and Gu De-ren. An automatic detecion approch for GS orthogonalization. Journal of Electronics, 1995, 17(1): 79-85.[14]Anderson T W. Asymptotic theory for principal component analysis[J].Annals of Mathematics and Statistics.1963, 34:122-148[15]Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice Hall, 1993, Chapter 15.[16]Gupta R. Asymptotic theory for principal component analysis in the complex case. Journal of the Indian Statistical Association, 1965, 3(283): 97-106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3565) PDF downloads(792) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return