Advanced Search
Volume 32 Issue 2
Aug.  2010
Turn off MathJax
Article Contents
Jiang Feng, Fan Yu-shun. Coverage Density Based Approach for Concept Lattice Reduction[J]. Journal of Electronics & Information Technology, 2010, 32(2): 405-410. doi: 10.3724/SP.J.1146.2009.00099
Citation: Jiang Feng, Fan Yu-shun. Coverage Density Based Approach for Concept Lattice Reduction[J]. Journal of Electronics & Information Technology, 2010, 32(2): 405-410. doi: 10.3724/SP.J.1146.2009.00099

Coverage Density Based Approach for Concept Lattice Reduction

doi: 10.3724/SP.J.1146.2009.00099
  • Received Date: 2009-01-19
  • Rev Recd Date: 2009-06-29
  • Publish Date: 2010-02-19
  • To address the lattice size exponential explosion problem in large scale data and rule mining, concept coverage density function and measurement model are introduced to reduce redundant concepts. The pruned lattice, named marked-concept lattice, has linear space complexity and can be obtained through direct or synchronous construction or node-extraction. Analysis and simulation tests show that this reduction model not only significantly reduces normal concept lattice size, but also significantly improves lattice building and rule mining efficiency. Furthermore, marked concept carries crucial information and physical meanings, thus can make benefits for Web service relationship mining.
  • loading
  • Ganter B and Wille R. Formal Concept Analysis Mathematical Foundations [M]. Berlin: Springer Press, 1999: 17-35.[2]Kuznetsov S O. Machine learning and formal concept analysis [J]. Lecture Notes in Computer Science, 2004, 2961: 3901-3926.[3]Hesse W and Tilley T. Formal concept analysis used for software analysis and modeling [J].Lecture Notes in Computer Science.2005, 3626:288-303[4]Laukaitis A and Vasilecas O. Formal concept analysis for business information systems [J]. Information Technology and Control, 2008, 37(1): 33-37.[5]Yahia S B and Jaoua A. Discovering Knowledge from Fuzzy Concept Lattice [M]. Kandel A, Last M, Bunke H edits: Data Mining and Computational Intelligence. Heidelberg: Springer Press, 2001: 167-190.[6]谢志鹏, 刘宗田. 概念格的快速渐进式构造算法[J]. 计算机学报, 2002, 25(5): 490-496. Xie Zhi-peng and Liu Zong-tian. A fast incremental algorithm for building concept lattice [J]. Chinese Journal of Computers, 2002, 25(5): 490-496.[7]蒋义勇, 张继福, 张素兰. 基于链表结构的概念格渐进式构造[J]. 计算机工程与应用, 2007, 43(11): 178-180.[8]Jiang Yi-yong, Zhang Ji-fu, and Zhang Su-lan. Incremental construction of concept lattice based on linked list structure [J]. Computer Engineering and Applications, 2007, 43(11):[9]8-180.[10]Fu H G and Nguifo E M. A parallel algorithm to generate formal concepts for large data [J]. Lecture Notes in Artificial Intelligence, 2004, 2961: 394-401.[11]刘利峰, 吴孟达, 王丹. 基于属性约简的概念格构造[J]. 计算机工程与科学, 2007, 29(6): 140-142.Liu Li-feng, Wu Meng-da, and Wang Dan. Building concept lattices based on attribute reduction [J].Computer Engineering Science.2007, 29(6):140-142[12]Formica A. Concept similarity in formal concept analysis: an information content approach [J].Knowledge-Based Systems.2008, 21(1):80-87[13]郭耀煌, 刘家诚, 刘常青等. 格序决策[M]. 上海: 上海科学技术出版社, 2003: 15.[14]Guo Yao-huang.[J].Liu Jia-cheng, and Liu Chang-qing, et al.. Lattice Decision [M]. Shanghai: Shanghai Science Technology Press.2003,:-[15]Godin R, Missaouir R, and Alaout H. Incremental concept formation algorithms based on Galois (concept) Lattices [J].Computational Intelligence.1995, 11(2):246-267[16]张玲, 林亚平, 陈治平等. 基于综合价值的Web主题信息搜集策略研究[J]. 系统仿真学报, 2005, 17(2): 323-326.Zhang Ling, Lin Ya-ping, and Chen Zhi-ping, et al.. Research of searching strategy in Web topic crawler [J]. Acta Simulata Systematica Sinica, 2005, 17(2): 323-326.[17]夏海江, 吴健, 邓水光. 基于序列挖掘的Web服务推荐研究. 计算机应用研究, 2007, 24(6): 75-78.Xia Hai-jiang, Wu Jian, and Deng Shui-guang. Research on recommendation of Web services based on sequence mining [J]. Application Research of Computers, 2007, 24(6): 75-78.[18]吴江霞, 杨放春. 支持事务机制的Web服务组合QoS属性预测方法[J].电子与信息学报.2008, 30(3):703-706浏览Wu Jiang-xia and Yang Fang-chun. QoS prediction of Web service composition with transaction mechanism [J].Journal of Electronics Information Technology.2008, 30(3):703-706[19]Davidov D, Rappoport A, and Koppel M. Fully unsupervised discovery of concept-specific relationships by Web mining [C]. 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic, June 23-30, 2007: 232-239.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3785) PDF downloads(929) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return