Perona P and Malik J. Scale-space and edge detection usinganisotropic diffusion[J].IEEE Transactions on PatternAnalysis and Machine Intelligence.1990, 12(7):629-639[2]Rudin L, Osher S, and Fatemi E. Nonlinear Total Variationbased noise removal algorithms[J].Physical D.1992, 60(1-4):259-268[3]Teboul S, Blanc-Feraud L, Aubert G, and Barlaud M.Variational approach for edge-preserving regularization usingcoupled PDE's[J].IEEE Transactions on Image Processing.1998, 7(3):387-397[4]芦碧波, 郭志昌. 非局部偏微分方程去噪模型[J]. 吉林大学学报(理学版), 2007, 45(6): 935-936.Lu Bi-bo and Guo Zhi-chang. Nonlocal partial differentialequation model for image denoising[J]. Journal of JilinUnicersity(Science Edition), 2007, 45(6): 935-936.[5]张红英, 吴亚东, 吴斌. 基于变分PDE 的非线性数字混合滤波器[J]. 计算机辅助设计与图形学学报, 2007, 19(9):1089-1093.Zhang Hong-ying, Wu Ya-dong, and Wu Bin. Nonlineardigital hybrid filter based on variational PDE[J]. Journal ofcomputer-Aided Design Computer Graphics, 2007, 19(9):1089-1093.[6]邵文泽, 韦志辉. 局部几何结构驱动的图像插值放大及超分辨率复原[J]. 中国图象图形学报, 2008, 13(7): 1235-1243.Shao Wen-ze and Wei Zhi-hui.Local geometry driven imagemagnification and super-resolution[J]. Journal of Image andGraphics, 2008, 13(7): 1235-1243.[7]邵文泽, 韦志辉. 基于广义Huber-MRF 图像建模的超分辨率复原算法[J]. 软件学报, 2007, 18(10): 2434-2444.Shao Wen-ze and Wei Zhi-hui. Super-resolution imagerestoration based on Huber-MRF modle[J]. Journal ofSoftware, 2007, 18(10): 2434-2444.[8]Weickert J. Coherence-enhancing diffusion of color images[J].Image and Vision Computing.1999, 17(3):201-212[9]Mrzek P and Navara M. Selection of optimal stoppingtime for nonlinear diffusion filtering[J].International Journalof Computer Vision.2003, 52(2/3):189-203[10]Gilboa G, Sochen N, and Zeevi Y Y. Estimation of optimalPDE-based denoising in the SNR sense[J].IEEETransactions on Image Processing.2006, 15(8):2269-2280[11]Charbonnier P, Blanc-Feraud L, Aubert G, and Barlaud M.Deterministic edgepreserving regularization in computedimaging[J].IEEE Transactions on Image Processing.1997,6(2):298-311[12]Tschumperl D. Vector-valued image regularization withPDEs: A common framework for different applications[J].IEEE Transactions on Pattern Analysis and. MachineIntelligence, 2005, 12(7): 629-639.
|