Advanced Search
Volume 31 Issue 8
Dec.  2010
Turn off MathJax
Article Contents
Yang Hai-juan, Qiu Ling. Adaptive Feedback for Rician Channel Exploiting Channel Mean Information[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1941-1945. doi: 10.3724/SP.J.1146.2008.01213
Citation: Yang Hai-juan, Qiu Ling. Adaptive Feedback for Rician Channel Exploiting Channel Mean Information[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1941-1945. doi: 10.3724/SP.J.1146.2008.01213

Adaptive Feedback for Rician Channel Exploiting Channel Mean Information

doi: 10.3724/SP.J.1146.2008.01213
  • Received Date: 2008-09-25
  • Rev Recd Date: 2009-04-23
  • Publish Date: 2009-08-19
  • In multi-user multi-antenna downlink system, when the channels are Rician channels, the performance of those limited feedback strategies designed for uncorrelated Rayleigh Channels will result to the waste of feedback overhead. To solve this problem, a new adaptive feedback strategy is proposed in Rician channels. First, a new concept of the angle distance distribution in the Rician channel is introduced. Based on this theory and using the channel mean information at the transmitter, the proposed strategy can design a special threshold to adjust users codebook, which is closer to the channel direction. Moreover, this strategy can still adjust its number of feedback bits adaptively according to different channel distributions without increasing the quantized error of channel direction. The simulation shows that, compared to those strategies proposed for Rayleigh systems, the strategy can reduce feedback overhead greatly without decreasing system sum-rate.
  • loading
  • Costa M. Writing on dirty paper[J].IEEE Transactions onInformation Theory.1983, 29(3):439-441[2]Spencer Q, Swindlehurst A L, and Haardt M. Zero-forcingmethods for downlink spatial multiplexing in multiuserMIMO channels[J].IEEE Transactions on SignalProcessing.2004, 52(2):461-471[3]Sharif M and Hassibi B. Scaling laws of sum rate usingtime-sharing, DPC, and beamforming for MIMO broadcastchannels[C]. IEEE International Symposium InformationTheory, Chicago, 2004: 175.[4]Jindal N. MIMO broadcast channels with finite ratefeedback[C]. IEEE GLOBECOM, MN, USA, 2005:1520-1524.[5]Yoo T, Jindal N, and Goldsmith A. Multi-antenna downlinkchannels with limited feedback and user selection[J].IEEEJournal Selected Areas in Communication.2007, 25(7):1478-1491[6]Hammarwall D, Bengtsson M, and Ottersten B. Acquiringpartial CSI for spatially selective transmission byinstantaneous channel norm feedback[J].IEEETransactions on Signal Processing.2008, 56(3):1188-1204[7]Oteri O, Yoon E, and Paulraj A. Linear precoding forhigh-K-factor channels exploiting channel mean andcovariance information[J]. IEEE Transactions on VehicularTechnology, 2007, 56(5): 2581-2589.[8]Kim I M, Yi Zhihang, and Kim D, et al.. Improvedopportunistic beamforming in Ricean channels[J].IEEETransactions on Communication.2006, 54(12):2199-2211[9]Yoo T and Goldsmith A. On the optimality of multiantennabroadcast scheduling using zero-forcing beamforming[J].IEEE Journal Selected Areas in Communication.2006, 24(3):528-541[10]Yeung C A and Love D J. On the performance of randomvector quantization limited feedback beamforming in a MISOsystem[J].IEEE Transactions on Wireless Communication.2007, 6(2):458-462[11]Mukkavilli K K, Sabharwal A, and Erkip E, et al.. Onbeamforming with finite rate feedback in multiple-antennasystems[J].IEEE Transactions on Information Theory.2003,49(10):2562-2579[12]李博纳, 赵新泉. 概率论与数理统计[M]. 北京: 高等教育出版社, 2006: 257-258.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3286) PDF downloads(855) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return