Feather F and Maxion R. Fault detection in an ethernetnetwork using anomaly signature matching. Proc. ACMSIGCOMM, San Francisco, CA, 1993: 279-288.[2]Ho L L, Cavuto D J, and Papavassiliou S, et al.. Adaptiveand automated detection of service anomalies in transactionorientedWAN's: network analysis, algorithms,implementation, and deployment [J].IEEE Journal ofSeletected Areas in Communications.2000, 18(5):744-757[3]Box G E P, Jenkins G M, and Reinsel G C. Time SeriesAnalysis: Forecasting and Control [M]. 3rd ed. EnglewoodCliffs: Prentice Hall, 1994, chapter 3-chapter 4.[4]Methaprayoon K, Lee Wei-jen, and Rasmiddatta S, et al..Multistage Artificial neural network short-Term loadforecasting engine with front-end weather forecast [J].IEEETransactions on Industry Applications.2007, 43(6):1410-1416[5]Muller K R and Smola A. Prediction time series with supportvector machines. Proc. ICANN, Lausanne, Switzerland, 1997:999-1004.[6]Kaheil Y H, Rosero E, and Gill M K, et al.. Downscaling andforecasting of evapotranspiration using a synthetic model ofwavelets and support vector machines[J].IEEE Transactionson Geoscience and Remote Sensing.2008, 46(9):2692-2707[7]Shi Zhi-wei and Han Min. Support vector echo-state machinefor chaotic time-series prediction [J].IEEE Transactions onNeural Networks.2007, 18(2):359-372[8]Vapnik V. The Nature of Statistical Learning Theory [M].New York: Springer-Verlag, 1995, Chapter 6.[9]邓乃扬, 田英杰. 数据挖掘中的新方法支持向量机[M].北京: 科学出版社, 2004: 143-161.Deng Nai-yang and Tian Ying-jie. The New Method of DataMining: Support Vector Machines [M]. Beijing: Science Press,2004: 335-341.[10]朱树先, 张仁杰. 支持向量机核函数选择对面部特征识别的作用[J]. 光学技术, 2008, 34(6): 902-904.Zhu Shu-xian and Zhang Ren-jie. Kernel selection for supportvector machines used in face feature recognition [J]. OpticalTechnique, 2008, 34(6): 902-904.[11]Gold C and Sollich P. Model selection for support vectormachine classification [J].Neurocomputing.2003, 55(1-2):221-249[12]Smola A.[J].Murata N, and Sch.lkopf B, et al.. Asymptoticallyoptimal choice of -loss for support vector machines. Proc.ICANN, Skovde, Sweden.1998,:-[13]Cherkassky V and Ma Yun-qian. Practical selection of SVMparameters and noise estimation for SVM regression [J].Neural Networks.2004, 17(1):113-126[14]Sch.lkopf B, Bartlett P, and Smola A, et al.. Support vectorregression with automatic accuracy control. Proceedings ofICANN'98, Berlin, 1998: 111-116.
|