Advanced Search
Volume 31 Issue 9
Dec.  2010
Turn off MathJax
Article Contents
Yu Yan-hua, Song Jun-de. A Mechanism of Telecommunication Network Performance Monitoring Based on Anomaly Detection[J]. Journal of Electronics & Information Technology, 2009, 31(9): 2220-2225. doi: 10.3724/SP.J.1146.2008.01196
Citation: Yu Yan-hua, Song Jun-de. A Mechanism of Telecommunication Network Performance Monitoring Based on Anomaly Detection[J]. Journal of Electronics & Information Technology, 2009, 31(9): 2220-2225. doi: 10.3724/SP.J.1146.2008.01196

A Mechanism of Telecommunication Network Performance Monitoring Based on Anomaly Detection

doi: 10.3724/SP.J.1146.2008.01196
  • Received Date: 2008-09-22
  • Rev Recd Date: 2009-05-14
  • Publish Date: 2009-09-19
  • With operation and maintenance mode of telecommunication network changing from network oriented to subscriber oriented, network performance management should also be changed from passive monitoring to proactive monitoring. Proactive Performance Monitoring (PPM) enables a fast fault correction by detecting anomalies designating performance degradation. In this paper, a novel anomaly detection approach is proposed taking advantage of time series prediction and associated confidence interval based on Support Vector Machines (SVM). In addition a novel meta-parameters selection approach is proposed by checking if the training residual is white noise. Theoretical analysis and experimental results verify the correctness of the meta-parameter selection approach and the effectiveness of anomaly detection mechanism.
  • loading
  • Feather F and Maxion R. Fault detection in an ethernetnetwork using anomaly signature matching. Proc. ACMSIGCOMM, San Francisco, CA, 1993: 279-288.[2]Ho L L, Cavuto D J, and Papavassiliou S, et al.. Adaptiveand automated detection of service anomalies in transactionorientedWAN's: network analysis, algorithms,implementation, and deployment [J].IEEE Journal ofSeletected Areas in Communications.2000, 18(5):744-757[3]Box G E P, Jenkins G M, and Reinsel G C. Time SeriesAnalysis: Forecasting and Control [M]. 3rd ed. EnglewoodCliffs: Prentice Hall, 1994, chapter 3-chapter 4.[4]Methaprayoon K, Lee Wei-jen, and Rasmiddatta S, et al..Multistage Artificial neural network short-Term loadforecasting engine with front-end weather forecast [J].IEEETransactions on Industry Applications.2007, 43(6):1410-1416[5]Muller K R and Smola A. Prediction time series with supportvector machines. Proc. ICANN, Lausanne, Switzerland, 1997:999-1004.[6]Kaheil Y H, Rosero E, and Gill M K, et al.. Downscaling andforecasting of evapotranspiration using a synthetic model ofwavelets and support vector machines[J].IEEE Transactionson Geoscience and Remote Sensing.2008, 46(9):2692-2707[7]Shi Zhi-wei and Han Min. Support vector echo-state machinefor chaotic time-series prediction [J].IEEE Transactions onNeural Networks.2007, 18(2):359-372[8]Vapnik V. The Nature of Statistical Learning Theory [M].New York: Springer-Verlag, 1995, Chapter 6.[9]邓乃扬, 田英杰. 数据挖掘中的新方法支持向量机[M].北京: 科学出版社, 2004: 143-161.Deng Nai-yang and Tian Ying-jie. The New Method of DataMining: Support Vector Machines [M]. Beijing: Science Press,2004: 335-341.[10]朱树先, 张仁杰. 支持向量机核函数选择对面部特征识别的作用[J]. 光学技术, 2008, 34(6): 902-904.Zhu Shu-xian and Zhang Ren-jie. Kernel selection for supportvector machines used in face feature recognition [J]. OpticalTechnique, 2008, 34(6): 902-904.[11]Gold C and Sollich P. Model selection for support vectormachine classification [J].Neurocomputing.2003, 55(1-2):221-249[12]Smola A.[J].Murata N, and Sch.lkopf B, et al.. Asymptoticallyoptimal choice of -loss for support vector machines. Proc.ICANN, Skovde, Sweden.1998,:-[13]Cherkassky V and Ma Yun-qian. Practical selection of SVMparameters and noise estimation for SVM regression [J].Neural Networks.2004, 17(1):113-126[14]Sch.lkopf B, Bartlett P, and Smola A, et al.. Support vectorregression with automatic accuracy control. Proceedings ofICANN'98, Berlin, 1998: 111-116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3152) PDF downloads(1024) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return