Advanced Search
Volume 31 Issue 8
Dec.  2010
Turn off MathJax
Article Contents
Zhang Lu-you, Zhang Yong-shun, Yang Yun. A De-correlation Algorithm Based on Chaos Adaptive Mutation PSO Optimization[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1825-1829. doi: 10.3724/SP.J.1146.2008.01188
Citation: Zhang Lu-you, Zhang Yong-shun, Yang Yun. A De-correlation Algorithm Based on Chaos Adaptive Mutation PSO Optimization[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1825-1829. doi: 10.3724/SP.J.1146.2008.01188

A De-correlation Algorithm Based on Chaos Adaptive Mutation PSO Optimization

doi: 10.3724/SP.J.1146.2008.01188
  • Received Date: 2008-09-22
  • Rev Recd Date: 2009-03-16
  • Publish Date: 2009-08-19
  • Meeting to the need of coherent signal direction-of-arrival estimation, applying particle swarm optimization algorithm, a Generalized Maximum Likelihood algorithm Based on Chaos Adaptive Mutation PSO (CAMPSOGML) optimization is proposed, the arrays geometry is unrestricted, furthermore, the number of sources resolved can be larger than the number of sensors, chaos initiation and adaptive mutation strategy is applied to basic PSO algorithm, the algorithm convergence speed is improved. The PSO algorithms defect which is easy to running into local optimum is overcome. Computer simulation results show that compared with the GML algorithm based on real genetic algorithm (GA) or PSO algorithm, CAMPSOGML algorithm is better at the aspects of convergence speed and estimation accuracy, this algorithm is a new and effective de-correlation DOA algorithm.
  • loading
  • 王布宏, 王永良, 陈辉. 相干信源波达方向估计的广义最大似然算法[J].电子与信息学报.2004, 26(2):225-232浏览[2]Kenney J and Eberhart R C. Particle swarm optimization [C].Proc IEEE international conference on Neural Networks.Perth, USA, 1995: 123-125.[3]Eberharte C and Shi Y. Particle swarm optimizationdevelopments, applications and resources [C]. Proceedings ofthe IEEE congress on evolutionary computation. Piscataway,USA, 2003: 24-26.[4]唐贤伦. 混沌粒子群优化算法理论及应用. [博士论文], 重庆大学, 2007: 34-36.Tang X L. The theory and application of particle swarmoptimization algorithm based on chaos. [Ph.D. dissertation],Chongqing University: 2007, 34-36.[5]高尚, 杨静宇. 群智能算法及其应用[M]. 北京: 中国水利水电出版社, 2006: 79-81.[6]吕振肃, 侯志荣. 自适应变异的粒子群优化算法[J]. 电子学报, 2004, 32(3): 416-420.Lu Z S and Hou Z R. ParticIe swarm optimization withadaptive mutation[J]. Acta Electronica Sinica, 2004, 32(3):416-420.[7]张陆游, 张永顺, 潘克战. 变步长自适应算法在雷达旁瓣对消系统中的应用[J]. 空军工程大学学报, 2008, 9(4): 25-28.Zhang L Y, Zhang Y S, and Pan K Z. The application ofun-constant-step adaptive algorithm in radar SLC system [J].Journal of Air Force Engineering University, 2008, 9(4):25-28.[8]王永良, 陈辉, 彭应宁等. 空间谱估计理论与算法[M]. 清华大学出版社, 2004: 146-149.Wang Y L, Chen H, and Peng Y L, et al.. Spatial SpectrumEstimation Theory and Algorithm [M]. Beijing: TsinghuaUniversity Press, 2004: 146-149.[9]刘伟, 王科俊, 邵克勇. 混沌时间序列的混合粒子群优化预测[J]. 控制与决策. 2007, 22(5): 562-564.Liu W, Wang K J, and Shao K J. Predicting chaotic timeseries using hybrid particle swarm optimization on algorithm[J]. Control and Decision, 2007, 22(5): 562-564.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3715) PDF downloads(1032) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return