Advanced Search
Volume 31 Issue 8
Dec.  2010
Turn off MathJax
Article Contents
Wang Lei, Zheng Bao-yu, Li Lei. Cooperative Spectrum Sensing Based on Random Matrix Theory[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1925-1929. doi: 10.3724/SP.J.1146.2008.01154
Citation: Wang Lei, Zheng Bao-yu, Li Lei. Cooperative Spectrum Sensing Based on Random Matrix Theory[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1925-1929. doi: 10.3724/SP.J.1146.2008.01154

Cooperative Spectrum Sensing Based on Random Matrix Theory

doi: 10.3724/SP.J.1146.2008.01154
  • Received Date: 2008-09-16
  • Rev Recd Date: 2009-03-04
  • Publish Date: 2009-08-19
  • Spectrum sharing of Cognitive Radios (CRs) has broad application prospects to the new generation of wireless communication networks. In multi-cognitive-user circumstance, using tools from asymptotic random matrix theory, a new cooperative scheme for frequency band sensing is proposed. The property of asymptotic spectrum distribution of random matrices and the convergence of the maximum eigenvalue with low samples are well considered. Theoretical analysis and simulations results show that the new algorithm is obviously outperforming congener algorithms and classical energy detection techniques.
  • loading
  • Sahai A. Spectrum sensing: Fundamental limits and practicalchallenges, DySPAN 2005 tutorial part I [C]. DySPAN 2005,Maryland, Nov 2005: 1-138.[2]Cardoso L S, Debbah M, and Bianchi P. Cooperativespectrum sensing using random matrix theory [C]. ISWPC,Santorini, 7-9 May 2008: 334-338.[3]Zeng Yong-hong and Liang Ying-chang. Maximum minimumeigenvalue detection for cognitive radio [C]. The 18th AnnualIEEE International Symposium on Personal, Indoor andMobile Radio Communications (PIMRC'07), Athens, 3-7Sept. 2007: 1-5.[4]Tulino A M and Verdu S. Random Matrix Theory andWireless Communications [M]. Boston: Now Publishers Inc,2004: 168-189.[5]Mehta M L. Random Matrices [M]. Third edition, London:Academic Press, 2006: 394-438.[6]Bai Z D and Silverstein Jack W. Spectral Analysis of LargeDimensional Random Matrices [M]. Beijing: Science Press,2006: 283-357.[7]Bai Z D. Methodologies in spectral analysis of largedimensional random matrices, a review [J]. Statistica Sinica,1999, 9(1): 611-677.[8]Johnstone I M. On the distribution of the largest eigenvaluein principle components analysis [J]. The Annals of Statistics,2001, 29(2): 295-327.[9]Johansson K. Shape fluctuations and random matrices [J].Communications in Mathematical Physics.2000, 209(2):437-476[10]Tracy C A and Widom H. On orthogonal and symplecticmatrix ensembles [J]. Communications in MathematicalPhysics, 1996, 177(3): 727-754.[11]Ghasemi A and Sousa E S. Collaborative spectrum sensingfor opportunistic access in fading environments [C]. FirstIEEE International Symposium on New Frontiers in DynamicSpectrum Access Networks (DySPAN 2005), Maryland, Nov2005: 131-136.[12]Ghasemi A and Sousa E S. Spectrum Sensing in CognitiveRadio Networks: The Cooperation-Processing Tradeoff [M].USA: WILEY, 2007: 1049-1060.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3405) PDF downloads(1665) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return