Advanced Search
Volume 31 Issue 8
Dec.  2010
Turn off MathJax
Article Contents
SHI Yuexiang, ZHU Maoqing. Collaborative Convolutional Transformer Network Based on Skeleton Action Recognition[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1485-1493. doi: 10.11999/JEIT220270
Citation: Xie Qiong, Li Jian-ping, Gao Xiao-guang, Jia Jian. Dynamic Multi-frequency Digital Lock-in Algorithm and Its Application[J]. Journal of Electronics & Information Technology, 2009, 31(8): 2006-2010. doi: 10.3724/SP.J.1146.2008.01015

Dynamic Multi-frequency Digital Lock-in Algorithm and Its Application

doi: 10.3724/SP.J.1146.2008.01015
  • Received Date: 2008-08-25
  • Rev Recd Date: 2009-01-05
  • Publish Date: 2009-08-19
  • A dynamic multi-frequency digital lock-in algorithm is presented in this paper. By this algorithm, the amplitude of the signal composed of the fundamental and the harmonics can be obtained. And in addition, the problem of frequency drift is solved by rectifying the reference frequency dynamically. Compared with the traditional method, this novel algorithm uses more information and does not need to choose the reference signal. When applied to NDIR gas concentration measurement, it not only widens the measurement range, but also improves the sensitivity of the detection.
  • Alonso R, Villuendas F, and Borja J, et al.. Low-cost, digitallock-in module with external reference for coating glasstransmission/reflection spectrophotometer[J].Meas. Sci.Technol.2003, 14(5):551-557[2]Martin C F, Henry C L, and Ivan R P, et al.. Self-phasemodulation signatures of neuronal activity[J].Optics Letters.2008, 33(3):219-221[3] PerkinElmer Instruments, Specifying Lock-in Amplifiers,Technical Note TN1001, www.signalrecovery.com., 2000.[4]汤子跃, 张守融. 频率源稳定性对BiSAR成像的影响研究[J].电子与信息学报.2004, 26(1):100-106浏览[5]Masciotti J M, Lasker J M, and Hielscher A H. Digital lock-indetection for discriminating multiple modulation frequencieswith high accuracy and computational efficiency[J].IEEETransactions on Instrumentation and Measurement.2008,57(1):182-189[6]Maximiliano O S and Fabian J B. Lock-in amplifier errorprediction and correction in frequency sweepmeasurements[J]. Review of Scientific Instruments, 2007,78(1): 1-7.[7]Rilling G and Flandrin P. One or two Frequencies? Theempirical mode decomposition answers[J].IEEETransactions on Signal Processing.2008, 56(1):85-95[8]Silver J A and Chen S J. Carbon monoxide sensor forcombustion feedback control. 44th AIAA Aerospace SciencesMeeting and Exhibit[C]. Reno, Nevada. 9-12 January 2006:1-9.[9]Ohlckers P, Ferber A M, and Dmitriev V K, et al.. Aphotoacoustic gas sensing silicon microsystem [C].Transducers 2001. Munich Germany, June 10-14 2001:780-783.[10]Remennyia M A, Zotovaa N V, and Karandasheva S A, et al..Low voltage episide down bonded mid-IR diode optopairs forgas sensing in the 33-4.3 m spectral range [J].. Sensors andActuators B.2003, 91(2):256-261
  • Cited by

    Periodical cited type(13)

    1. 王晓路,汶建荣. 基于运动-时间感知的人体动作识别方法. 计算机工程. 2025(01): 216-224 .
    2. 宋永坤,晏天兴,张可,刘显,戴永鹏,金添. 基于点云时空特征的超宽带雷达轻量化人体行为识别方法. 雷达学报(中英文). 2025(01): 1-15 .
    3. 石东子,林宏辉,刘一江,张鑫. 面向骨架手势识别的全局时空可变形网络. 电子科技大学学报. 2024(01): 60-66 .
    4. 曹毅,吴伟官,张小勇,夏宇,高清源. 基于自校准机制的时空采样图卷积行为识别模型. 工程科学学报. 2024(03): 480-490 .
    5. 谢文武,袁婷,张海洋,李敏,李桂林,李中年. 基于智能反射表面的单站智能定位算法研究. 无线电工程. 2024(03): 557-564 .
    6. 刘斌斌,赵宏涛,王田,杨艺. 用于骨架行为识别的时空卷积Transformer网络. 电子测量技术. 2024(01): 169-177 .
    7. 陈迪,李焱芳,毕卫云,李朗,蒲珊珊. 基于视频时空特征提取分类的动作分析评估模型. 现代电子技术. 2024(08): 160-164 .
    8. 童立靖,冯金芝,英溢卓,曹楠. 基于图卷积与规则匹配的单兵动作识别. 北方工业大学学报. 2024(01): 12-19 .
    9. 卢先领,杨嘉琦. 时空关联的Transformer骨架行为识别. 信号处理. 2024(04): 766-775 .
    10. 龚成张,严云洋,卞苏阳,祝巧巧,冷志超. 基于Fast-CAANet的火焰检测方法. 南京师大学报(自然科学版). 2024(02): 109-116 .
    11. 韩宗旺,杨涵,吴世青,陈龙. 时空自适应图卷积与Transformer结合的动作识别网络. 电子与信息学报. 2024(06): 2587-2595 . 本站查看
    12. 陈斌,樊飞燕,陆天易. 骨骼双流注意力增强图卷积人体姿态识别. 南京师范大学学报(工程技术版). 2024(04): 57-67 .
    13. 曹毅 ,吴伟官 ,李平 ,夏宇 ,高清源 . 基于时空特征增强图卷积网络的骨架行为识别. 电子与信息学报. 2023(08): 3022-3031 . 本站查看

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3012) PDF downloads(964) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return