宋枫溪, 高秀梅, 刘树海等. 统计模式识别中的维数削减与低损降维[J]. 计算机学报, 2005, 28(11): 1915-1922.Song Feng-xi, Gao Xiu-mei, and Liu Shu-hai, et al..Dimensionality reduction in statistical pattern recognitionand low loss dimensionality reduction [J]. Chinese Journal ofComputers, 2005, 28(11): 1915-1922.[2]He X and Niyogi P. Locality preserving projections [C]. Proc.Conf. Advances in Neural Information Processing Systems,Vancouver, Canada, 2003: 585-591.[3]Kokiopoulou E and Saad Y. Orthogonal neighborhoodpreserving projections: A projection-based dimensionalityreduction technique [J].IEEE Transactions on PatternAnalysis and Machine Intelligence.2007, 29(12):2143-2156[4]申中华, 潘永惠, 王士同. 有监督的局部保留投影降维算法[J].模式识别与人工智能, 2008, 21(2): 233-239.Shen Zhong-hua, Pan Yong-hui, and Wang Shi-tong. Asupervised locality preserving projection algorithm fordimensionality reduction [J]. Pattern Recognition andArtificial Intelligence, 2008, 21(2): 233-239.[5]Tao Q, Wu G W, and Wang J. The theoretical analysis ofFDA and applications [J].Pattern Recognition.2006, 39(6):1199-1204[6]杨键, 杨静宇, 叶晖等. Fisher线性鉴别分析的理论研究及其应用[J]. 自动化学报, 2003, 29(4): 482-493.Yang Jian, Yang Jing-yu, Ye Hui, et al.. Theory of fisherlinear discriminant analysis and its application [J]. ActaAutomatic Sinica, 2003, 29(4): 482-493.[7]Liu J, Chen S C, and Tan X Y. A study on three lineardiscriminant analysis based methods in small sample sizeproblem[J].Pattern Recognition.2008, 41(1):102-116[8]Zhuang X S and Dai D Q. Improved discriminate analysis forhigh-dimensional data and its application to face recognition[J].Pattern Recognition.2007, 40(5):1570-1578[9]Cai D, He X, and Han J, et al.. Orthogonal laplacianfaces forface recognition [J].IEEE Transactions on Image Processing.2006, 15(11):3608-3614[10]Turk M and Pentland A. Eigenfaces for recognition [J].Journal of Cognitive Neuroscience.1991, 3(1):71-86[11]Masashi Sugiyama. Dimensionality reduction of multimodallabeled data by local Fisher discriminant analysis [J]. Journalof Machine Learning Research, 2007, 8(5): 1027-1061.[12]Jiang L X, Cai Z H, and Wang D H, et al.. Survey ofimproving k-nearest-neighbor for classification [C]. FourthInternational Conference on Fuzzy Systems and KnowledgeDiscovery (FSKD), Haikou, China, Aug 24-27, 2007: 679-683.
|