Advanced Search
Volume 31 Issue 8
Dec.  2010
Turn off MathJax
Article Contents
Wang Xiao-ming, Wang Shi-tong. Generalized Supervised Locality Preserving Projection[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1840-1845. doi: 10.3724/SP.J.1146.2008.00946
Citation: Wang Xiao-ming, Wang Shi-tong. Generalized Supervised Locality Preserving Projection[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1840-1845. doi: 10.3724/SP.J.1146.2008.00946

Generalized Supervised Locality Preserving Projection

doi: 10.3724/SP.J.1146.2008.00946
  • Received Date: 2008-07-24
  • Rev Recd Date: 2009-03-09
  • Publish Date: 2009-08-19
  • Supervised Locality Preserving Projection (SLPP) is a generalization of Locality Preserving Projection (LPP) in the case of supervised learning. In this paper the drawback of SLPP in the high-dimensional and small sample size case is pointed out, and a new algorithm called Generalized Supervised Locality Preserving Projection (GSLPP) is proposed. The relationship between SLPP and GSLPP is theoretically analyzed. In the small sample size case GSLPP can be solved equivalently in lower-dimensionality space. Finally, the effectiveness of the proposed algorithm is verified by experimental results.
  • loading
  • 宋枫溪, 高秀梅, 刘树海等. 统计模式识别中的维数削减与低损降维[J]. 计算机学报, 2005, 28(11): 1915-1922.Song Feng-xi, Gao Xiu-mei, and Liu Shu-hai, et al..Dimensionality reduction in statistical pattern recognitionand low loss dimensionality reduction [J]. Chinese Journal ofComputers, 2005, 28(11): 1915-1922.[2]He X and Niyogi P. Locality preserving projections [C]. Proc.Conf. Advances in Neural Information Processing Systems,Vancouver, Canada, 2003: 585-591.[3]Kokiopoulou E and Saad Y. Orthogonal neighborhoodpreserving projections: A projection-based dimensionalityreduction technique [J].IEEE Transactions on PatternAnalysis and Machine Intelligence.2007, 29(12):2143-2156[4]申中华, 潘永惠, 王士同. 有监督的局部保留投影降维算法[J].模式识别与人工智能, 2008, 21(2): 233-239.Shen Zhong-hua, Pan Yong-hui, and Wang Shi-tong. Asupervised locality preserving projection algorithm fordimensionality reduction [J]. Pattern Recognition andArtificial Intelligence, 2008, 21(2): 233-239.[5]Tao Q, Wu G W, and Wang J. The theoretical analysis ofFDA and applications [J].Pattern Recognition.2006, 39(6):1199-1204[6]杨键, 杨静宇, 叶晖等. Fisher线性鉴别分析的理论研究及其应用[J]. 自动化学报, 2003, 29(4): 482-493.Yang Jian, Yang Jing-yu, Ye Hui, et al.. Theory of fisherlinear discriminant analysis and its application [J]. ActaAutomatic Sinica, 2003, 29(4): 482-493.[7]Liu J, Chen S C, and Tan X Y. A study on three lineardiscriminant analysis based methods in small sample sizeproblem[J].Pattern Recognition.2008, 41(1):102-116[8]Zhuang X S and Dai D Q. Improved discriminate analysis forhigh-dimensional data and its application to face recognition[J].Pattern Recognition.2007, 40(5):1570-1578[9]Cai D, He X, and Han J, et al.. Orthogonal laplacianfaces forface recognition [J].IEEE Transactions on Image Processing.2006, 15(11):3608-3614[10]Turk M and Pentland A. Eigenfaces for recognition [J].Journal of Cognitive Neuroscience.1991, 3(1):71-86[11]Masashi Sugiyama. Dimensionality reduction of multimodallabeled data by local Fisher discriminant analysis [J]. Journalof Machine Learning Research, 2007, 8(5): 1027-1061.[12]Jiang L X, Cai Z H, and Wang D H, et al.. Survey ofimproving k-nearest-neighbor for classification [C]. FourthInternational Conference on Fuzzy Systems and KnowledgeDiscovery (FSKD), Haikou, China, Aug 24-27, 2007: 679-683.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3646) PDF downloads(1201) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return