Advanced Search
Volume 32 Issue 3
Aug.  2010
Turn off MathJax
Article Contents
Wu Xiang-dong, Zhao Yong-bo, Zhang Shou-hong, Dong Mei. Height Finding of Meter-wave Radar Using Improved Toeplitz Technique at Low-Angle Environment[J]. Journal of Electronics & Information Technology, 2010, 32(3): 570-574. doi: 10.3724/SP.J.1146.2008.00797
Citation: Wu Xiang-dong, Zhao Yong-bo, Zhang Shou-hong, Dong Mei. Height Finding of Meter-wave Radar Using Improved Toeplitz Technique at Low-Angle Environment[J]. Journal of Electronics & Information Technology, 2010, 32(3): 570-574. doi: 10.3724/SP.J.1146.2008.00797

Height Finding of Meter-wave Radar Using Improved Toeplitz Technique at Low-Angle Environment

doi: 10.3724/SP.J.1146.2008.00797
  • Received Date: 2008-06-23
  • Rev Recd Date: 2009-12-15
  • Publish Date: 2010-03-19
  • The echo waves of radar received consist of direct wave and multipath wave which is reflected from earth (sea) surface and coherent with direct wave. Two new height finding algorithms using improved Toeplitz technique at low-angle environment are presented. The first method uses not only every row elements but also corresponding every column elements of array covariance matrix to construct a Toeplitz matrix, a new covariance matrix is obtained taking average these two matrixes, this process is equivalent to spatial smoothing and improves the accuracy of DOA estimation of elevation. The second method based on the first method, reconstructing a Toeplitz matrix to approach the subspace of above covariance matrix constraint to maximum SNR (Signal Noise Ratio), it can reduce the influence of the noise to a certain extent and improve the robust of algorithm. Theoretical analysis and simulation results demonstrate the merits of the new algorithm.
  • loading
  • Jian C, Wang S, and Lin L. Two-dimensional DOAestimation of coherent signals based on 2D unitary ESPRITmethod[C]. ICSP2006 Proceedings, Beijing, 2006, 1: 16-20.[2]Tuncer T E, Yasar T K, and Friedlander B. Partly fillednonuniform linear arrays for DOA estimation in multipathsignals[C]. IEEE International Conference on ASSP,Honolulu. HI, 2007, 2: 1053-1059.[3]Ji Fei, Liang Jian, and Chen Fang-jiong. ESPRIT algorithmfor joint delay and 2-dimensional DOA estimation ofmultipath parameters[C]. Microwave Antenna Propagationand EMC Technologies for Wireless Communications,Hangzhou, China, 2007: 1093-1096.[4]Buon Kiong Lau and Yee Hong Leung. Transformations fornonunideal uniform circular array operating in correlatedsignal environments[J].IEEE Transactions on SignalProcessing.2006, 54(1):34-38[5]Kung S and Foka R. A Toeplitz approximation approach tocoherent source direction finding[C]. IEEE InternationalConference on ICASSP1986, Tokyo, 1986, 11: 193-196.[6]Han Fang-Ming and Zhang Xian-da. An ESPRIT-likealgorithm for coherent DOA estimation[C][J].Antennas andWireless Propagation Letters.2005, 4(1):443-446[7]Takao K, Kikuma N, and Yano T. Toeplitzization ofcorrelation matrix in multipath environment[C]. IEEEInternational Conference on ICASSP1986, Tokyo, 1986, 11:1873-1876.[8]王布宏, 王永良, 陈辉. 一种新的相干信源DOA 估计算法加权空间平滑协方差矩阵的Toeplitz 矩阵拟合[J]. 电子学报,2003, 9(31): 1394-1397.Wang Bu-hong, Wang Yong-liang, and Chen Hui. A novelgenetic approach to DOA estimation of coherent sourcesbased on weighted spatial smoothing and toeplitz matrixfitting [J]. Acta Electronic Sinica, 2003, 9(31): 1394-1397.[9]Rajagopal R and Rao P R. Generalised algorithm for DOAestimation in a passive sonar[J]. IEE Proceedings F, 1993,140(1): 12-20.[10]Mitchell W D. Subspace techniques for the estimation ofharmonic processes with application to passive sonar[D].Georgia institute of technology, Atlanta, GA, 1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3328) PDF downloads(802) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return