Advanced Search
Volume 31 Issue 9
Dec.  2010
Turn off MathJax
Article Contents
Guo Kai, Chen Yan-hui, Li Jian-dong. A Low Complexity Decoding Algorithm for Accumulated-Crossover Parallel-concatenated SPC Codes[J]. Journal of Electronics & Information Technology, 2009, 31(9): 2143-2147. doi: 10.3724/SP.J.1146.2008.00778
Citation: Guo Kai, Chen Yan-hui, Li Jian-dong. A Low Complexity Decoding Algorithm for Accumulated-Crossover Parallel-concatenated SPC Codes[J]. Journal of Electronics & Information Technology, 2009, 31(9): 2143-2147. doi: 10.3724/SP.J.1146.2008.00778

A Low Complexity Decoding Algorithm for Accumulated-Crossover Parallel-concatenated SPC Codes

doi: 10.3724/SP.J.1146.2008.00778
  • Received Date: 2008-06-19
  • Rev Recd Date: 2009-06-08
  • Publish Date: 2009-09-19
  • Accumulated-Crossover Parallel-concatenated SPC (A-CPSPC) Codes, which have good bit error rate performance and simple encoding structure, is a class of novel error-correcting codes. A Maximum A Posteriori (MAP) algorithm based on the Sum-Product Algorithm (SPA), is proposed to solve the local decoding, and to eliminate the effect of short cycles. Analysis and simulation results show that the conventional Belief Propagation (BP) decoding algorithm is not suitable for A-CPSPC codes, and the proposed local decoding algorithm can achieve the same performance as the one based on the BCJR algorithm, but has much lower complexity.
  • loading
  • Berrou C, Glavieux A, and Thitimajshima P. Near Shannonlimit error-correcting coding and decoding: Turbo-codes.Proc. of IEEE International Conference on Communications.Geneva, Switzerland, 1993, 2: 1064-1070.[2]MacKay D J C and Neal R M. Near Shannon limitperformance of low density parity check codes. ElectronicsLetters, 1996, 32(6): 1645-1646.[3]Liva G, Song S, and Lan L, et al.. Design of LDPC codes: Asurvey and new results. Journal of Communications Softwareand Systems, 2006, 2(3): 191-211.[4]Tee J S K, Taylor D P, and Martin P A. Multiple serial andparallel concatenated single parity-check codes[J].IEEETransactions on Communications.2003, 51(10):1666-1675[5]Chen L, Xu J, and Djurdjevic I, et al.. Near-Shannon-limitquasi-cyclic low-density parity-check codes[J].IEEETransactions on Communications.2004, 52(7):1038-1042[6]Lan L, Zeng L Q, and Tai Y Y, et al.. Construction ofquasi-cyclic LDPC codes for AWGN and binary erasurechannels: A finite field approach[J].IEEE Transactions onInformation Theory.2007, 53(7):2429-2458[7]Garcia-Frias J and Zhong W. Approaching Shannonperformance by iterative decoding of linear codes withlow-density generator matrix[J].IEEE Communications Letters.2003, 7(6):266-268[8]Babich F and Comisso M. Channel coding and multi-antennatechniques for distributed wireless networks. Proc. of IEEEGlobal Telecommunications Conference, Washington, DC,USA, 2007: 4180-4184.[9]Gonzalez-Lopez M, Vazquez-Araujo F J, and Castedo L, etal.. Serially-concatenated low-density generator matrix(SCLDGM) codes for transmission over AWGN and Rayleighfading channels. IEEE Transactions on WirelessCommunications, 2007, 6(8): 2753-2758.[10]Kim J S and Song H Y. Concatenated LDGM codes withsingle decoder[J].IEEE Communications Letters.2006, 10(4):287-289[11]Kschischang F R and Frey B J. Iterative decoding ofcompound codes by probability propagation in graphicalmodels[J].IEEE Journal on Selected Areas in Communications.1998, 16(2):219-230
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3444) PDF downloads(714) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return