Advanced Search
Volume 31 Issue 8
Dec.  2010
Turn off MathJax
Article Contents
Liu Guo-jun, Feng Xiang-chu, Zhang Xuan-de. Threshold Algorithm of Texture Images with Wave Atoms[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1791-1795. doi: 10.3724/SP.J.1146.2008.00595
Citation: Liu Guo-jun, Feng Xiang-chu, Zhang Xuan-de. Threshold Algorithm of Texture Images with Wave Atoms[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1791-1795. doi: 10.3724/SP.J.1146.2008.00595

Threshold Algorithm of Texture Images with Wave Atoms

doi: 10.3724/SP.J.1146.2008.00595
  • Received Date: 2008-05-15
  • Rev Recd Date: 2009-03-30
  • Publish Date: 2009-08-19
  • A novel denoising model for texture images is proposed, which is the soft threshold algorithm depending on both the smoothing parameter in Besov spaces and the scales of wave atoms. This model well considers the good properties of new multiscale geometric analysis toolwave atoms, such as the flexible choice of the orthonormal basis and tight frames, sparse representation of the oscillatory texture images, as well as parabolic scaling between wavelength and the size of the essential support. Numerical experiments show that the proposed model not only has a better denoising performance comparing to the hard and soft threshold, but also significantly improves the SNR with the increase of the smoothing parameter in Besov spaces.
  • loading
  • Donoho D L and Flesia A Gl. Can recent innovations inharmonic analysis explain key findings in natural imagestatistics [J]. Network: Computation in Neural Systems, 2001,12(3): 371-393.[2]焦李成, 谭山. 图像的多尺度几何分析: 回顾和展望[J]. 电子学报, 2003, 31(12A): 1975-1981.Jiao Li-cheng and Tan Shan. Development and prospect ofimage multiscale geometric analysis[J]. Acta ElectronicaSinica, 2003, 31(12A): 1975-1981.[3]Candes E J. Ridgelets: theory and applications[D]. [PH.D.dissertation], Stanford University, 1998.[4]Candes E J. Monoscale ridgelets for the representation ofimages with edges[R]. [Technical Report], Stanford University,1999.[5]Donoho D L. Orthonormal ridgelet and linear singularities[J].SIAM Journal on Mathematical Analysis.2000, 31(5):1062-1099[6]Candes E J and Donoho D L. Curvelets: a surprisinglyeffective nonadaptive representation for objects with edges[C].Curves and Surfaces Fitting, Saint-Malo 1999. Nashville, TN,2000: 105-120.[7]Candes E J and Donoho D L. New tight frames of crveletsand optimal representations of objects with2 C singularities[J].Communications on Pure and AppliedMathematics.2004, 57(2):219-266[8]Pennec E L and Mallat S. Sparse geometric imagerepresentation with bandelets[J].IEEE Transactions onImage Processing.2005, 14(4):423-438[9]Guo K and Labate D. Optimally sparse multidimensionalrepresentation using Shearlets[J].SIAM Journal onMathematical Analysis.2007, 39(1):298-318[10]汪凯斌, 俞卞章, 赵健等. 基于Gabor 小波的无边缘活动围道纹理分割方法[J].电子与信息学报.2007, 29(12):2819-2821浏览[11]Demanet L and Ying L X. Wave atoms and aparsity ofoscillatory patterns[J].Applied and Computational HarmonicAnalysis.2007, 23(3):368-387[12]Ma Jian-wei. Characterization of textural surfaces using waveatoms[J]. Applied Physics Letter, 2007, 90(5): 1-3.[13]Plonka G and Ma Jian-wei. Nonlinear regularizedreaction-diffusion filters for denoising of images withtextures[J].IEEE Transactions on Image Processing.2008,17(8):1283-1294[14]Villemoes L. Wavelet packets with uniform time-frequencylocation[J].Comptes-Rendus Mathematique.2002, 335(10):793-796[15]Rudin L I, Osher S J, and Fatemi E. Nonlinear Totalvariation based noise removal algorithms [J].Physica D.1992,60(1-4):259-268[16]Chambolle A and Lucier B J. Interpreting translationinvariantwavelet shrinkage as a new image smoothing scalespace[J].IEEE Transactions on Image Processing.2001, 10(7):993-1000[17]DeVore R A. Nonlinear approximation[J].Acta Numerica.1998, 7(1):51-150
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3633) PDF downloads(819) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return