Advanced Search
Volume 31 Issue 8
Dec.  2010
Turn off MathJax
Article Contents
Zhou Han-fei, Wang Xiao-tong, Xu Xiao-gang. Image Denoising Using Gaussian Scale Mixture Model in the Nonsubsampled Contourlet Domain[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1796-1800. doi: 10.3724/SP.J.1146.2008.00588
Citation: Zhou Han-fei, Wang Xiao-tong, Xu Xiao-gang. Image Denoising Using Gaussian Scale Mixture Model in the Nonsubsampled Contourlet Domain[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1796-1800. doi: 10.3724/SP.J.1146.2008.00588

Image Denoising Using Gaussian Scale Mixture Model in the Nonsubsampled Contourlet Domain

doi: 10.3724/SP.J.1146.2008.00588
  • Received Date: 2008-05-14
  • Rev Recd Date: 2009-03-26
  • Publish Date: 2009-08-19
  • A new method which using Gaussian scale mixtures model in the nonsubsampled Contourlet domain is proposed for image denoising. First, a Gaussian scale mixture model is introduced in order to capturing the correlation of nonsubsampled Contourlet locally coefficients. Then the coefficients are estimated by Bayes least squares estimator based on the model. Finally, the inverse nonsubsampled Contourlet transform is applied to the modified coefficients. This arithmetic combines the character of nonsubsampled Contourlet for image edge representation, shift-invariance and the effective of Gaussian scale mixture model for capturing correlation of locally coefficients. The numerical experimental results show the validity of the proposed method.
  • loading
  • Dohono D L and Johnstone I M. Ideal spatial adaptation viawavelet shrinkage[J].Biometrika.1994, 81(3):425-455[2]Chang S G, Yu Bin, and Vetterli M. Adaptive waveletthresholding for image denoising and compression[J].IEEETransactions on Image Processing.2000, 9(9):1532-1546[3]Strela V, Portilla J, and Simonceil E P. Image denoising usinga local Gaussian scale mixture model in the waveletdomain[C]. Processings of SPIE Conference on WaveletApplications in Signal and Image Processing, San Diego, CA,2000, 4119: 363-371.[4]Portilla J, Strela V, and Wainwright M, et al.. Imagedenoisng using Gaussian Scale Mixtures in the WaveletDomain[J].IEEE Transactions on Image Processing.2003,12(11):1338-1351[5]田沛, 李庆周, 马平等. 一种基于小波变换的图像去噪新方法[J]. 中国图象图形学报, 2008, 13(3): 394-399.Tian Pei, Li Qing-zhou, and Ma Ping, et al.. A new methodbased on wavelet transform for image denoising[J]. Journal ofImages and Graphics, 2008, 13(3): 394-399.[6]Candes E J. Ridgelets: theory and application[D].[Ph.D.dissertation]. Department of Statistics, StandardUniversity, 1998.[7]Candes E J and Donoho D L. New tight frames of Curveletsand optimal representation of objects with smoothsingularities[R]. USA: Department of Statistics, StandardUniversity, 2002.[8]Starck J L, Candes E J, and Dohono D L. The Curvelettransform for image denoising[J].IEEE Transactions onImage Processing.2002, 11(6):670-684[9]Do M N. Directional multiresolution image representation[D].[Ph.D. dissertation]. School Comput. Commun. Sci. SwissFed. Inst. Technol. , Lausanne, Switzerland, 2001.[10]Do M N and Vetterli M. The Contourlet transform: Anefficient directional multiresolution image representation[J].IEEE Transactions on Image Processing.2005, 14(12):2091-2106[11]Starck J L, Donoho D L, and Candes E J. Very high qualityimage restoration by combining Wavelets and Curvelets[C].46th SPIE Annual Meeting, Conference on Signal and ImageProcessing, San Diego, USA, July 2001, 4478: 9-19.[12]金海燕, 焦李成, 刘芳. 基于Curvelet 域隐马尔科夫树模型的SAR 图像去噪[J]. 计算机学报, 2007, 30(3): 491-496.Jin Hai-yan, Jiao Li-cheng, and Liu Fang. SAR imagede-noising based on Curvelet domain hidden Markov treemodels[J]. Chinese Journal of Computers, 2007, 30(3):491-496.[13]Cunha A L, Zhou Jian-ping, and Do M N. Thenonsubsampled Contourlet transform: theory, design andapplication[J].IEEE Transactions on Image Processing.2006,15(10):3089-3101[14]Box G E P and Tiao C. Bayesian Inference in StatisticalAnalysis[M]. Reading, MA: Addison Wesley, 1992: 159-163.[15]Romberg J, Choi H, and Baraniuk P G. Bayesian waveletdomain image modeling using hidden Markov models[J].IEEE Transactions on Image Processing.2001, 10(7):1056-1068[16]Duncan D Y P and Do M N. Directional multiscale modelingof images using the Contourlet transform[J].IEEETransactions on Image Processing.2006, 15(6):1610-1620
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3585) PDF downloads(1027) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return