| Citation: | HE Ming, WU Jingjing, HAN Wei, LIU Sicong, PAN Pan, XIA Hengyu. Bionic Behavior Modeling Method for Unmanned Aerial Vehicle Swarms Empowered by Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251103 |
| [1] |
FAN Ruitao, WANG Jintao, HAN Weixin, et al. UAV swarm control based on hybrid bionic swarm intelligence[J]. Guidance, Navigation and Control, 2023, 3(2): 2350008. doi: 10.1142/S2737480723500085.
|
| [2] |
LONG Weifan, HOU Taixian, WEI Xiaoyi, et al. A survey on population-based deep reinforcement learning[J]. Mathematics, 2023, 11(10): 2234. doi: 10.3390/math11102234.
|
| [3] |
BENI G and WANG Jing. Swarm intelligence in cellular robotic systems[M]. DARIO P, SANDINI G, and AEBISCHER P. Robots and Biological Systems: Towards a New Bionics?. Berlin: Springer, 1993: 703–712. doi: 10.1007/978-3-642-58069-7_38.
|
| [4] |
何明, 陈浩天, 韩伟, 等. 无人机仿鸟群协同控制发展现状及关键技术[J]. 航空学报, 2024, 45(20): 029946. doi: 10.7527/S1000-6893.2024.29946.
HE Ming, CHEN Haotian, HAN Wei, et al. Development status and key technologies of cooperative control of bird-inspired UAV swarms[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 029946. doi: 10.7527/S1000-6893.2024.29946.
|
| [5] |
段海滨, 邵山, 苏丙未, 等. 基于仿生智能的无人作战飞机控制技术发展新思路[J]. 中国科学: 技术科学, 2010, 40(8): 853–860.
DUAN Haibin, SHAO Shan, SU Bingwei, et al. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle[J]. Science China Technological Sciences, 2010, 53(8): 2025–2031. doi: 10.1007/s11431-010-3160-z.
|
| [6] |
邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用, 2015, 32(10): 1298–1304. doi: 10.7641/CTA.2015.50314.
QIU Huaxin, DUAN Haibin, and FAN Yanming. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks[J]. Control Theory & Applications, 2015, 32(10): 1298–1304. doi: 10.7641/CTA.2015.50314.
|
| [7] |
梁鸿涛, 王耀南, 华和安, 等. 无人集群系统深度强化学习控制研究进展[J]. 工程科学学报, 2024, 46(9): 1521–1534. doi: 10.13374/j.issn2095-9389.2023.07.30.001.
LIANG Hongtao, WANG Yaonan, HUA Hean, et al. Deep reinforcement learning to control an unmanned swarm system[J]. Chinese Journal of Engineering, 2024, 46(9): 1521–1534. doi: 10.13374/j.issn2095-9389.2023.07.30.001.
|
| [8] |
NTI I K, ADEKOYA A F, WEYORI B A, et al. Applications of artificial intelligence in engineering and manufacturing: A systematic review[J]. Journal of Intelligent Manufacturing, 2022, 33(6): 1581–1601. doi: 10.1007/s10845-021-01771-6.
|
| [9] |
刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908. doi: 10.7527/S1000-6893.2022.26908.
LIU Lei, LIU Dawei, WANG Xiaoguang, et al. Development status and outlook of UAV clusters and anti-UAV clusters[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908. doi: 10.7527/S1000-6893.2022.26908.
|
| [10] |
LIU Yunxiao, WANG Yiming, LI Han, et al. Runway-free recovery methods for fixed-wing UAVs: A comprehensive review[J]. Drones, 2024, 8(9): 463. doi: 10.3390/drones8090463.
|
| [11] |
SHAHZAD M M, SAEED Z, AKHTAR A, et al. A review of swarm robotics in a nutshell[J]. Drones, 2023, 7(4): 269. doi: 10.3390/drones7040269.
|
| [12] |
ZAITSEVA E, LEVASHENKO V, MUKHAMEDIEV R, et al. Review of reliability assessment methods of drone swarm (fleet) and a new importance evaluation based method of drone swarm structure analysis[J]. Mathematics, 2023, 11(11): 2551. doi: 10.3390/math11112551.
|
| [13] |
SANKEY D W E and PORTUGAL S J. Influence of behavioural and morphological group composition on pigeon flocking dynamics[J]. Journal of Experimental Biology, 2023, 226(15): jeb245776. doi: 10.1242/jeb.245776.
|
| [14] |
BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1232–1237. doi: 10.1073/pnas.0711437105.
|
| [15] |
罗琪楠, 段海滨, 范彦铭. 鸽群运动模型稳定性及聚集特性分析[J]. 中国科学: 技术科学, 2019, 49(6): 652–660. doi: 10.1360/N092017-00320.
LUO Qi'’nan, DUAN Haibin, and FAN Yanming. Analysis on stability and aggregation behavior of pigeon collective model[J]. Scientia Sinica Technologica, 2019, 49(6): 652–660. doi: 10.1360/N092017-00320.
|
| [16] |
HUO Mengzhen, DUAN Haibin, and DING Xilun. Manned aircraft and unmanned aerial vehicle heterogeneous formation flight control via heterogeneous pigeon flock consistency[J]. Unmanned Systems, 2021, 9(3): 227–236. doi: 10.1142/S2301385021410053.
|
| [17] |
CAO Shiyue, LEE C Y, DUAN Haibin, et al. Quadrotor swarm flight experimentation inspired by pigeon flock topology[C]. 2019 IEEE 15th International Conference on Control and Automation (ICCA), Edinburgh, UK, 2019: 657–662. doi: 10.1109/ICCA.2019.8899745.
|
| [18] |
HANG Xu and YIN Wang. Target assignment of heterogeneous multi-UAVs based on pigeon-inspired optimization[C]. 2020 International Conference on Guidance on Advances in Guidance, Tianjin, China, 2020: 3987–3998. doi: 10.1007/978-981-15-8155-7_333.
|
| [19] |
PAN Chengsheng, SI Zenghui, DU Xiuli, et al. A four-step decision-making grey wolf optimization algorithm[J]. Soft Computing, 2021, 25(22): 14375–14391. doi: 10.1007/s00500-021-06194-2.
|
| [20] |
MADDILETI T, SALENDRA G, and SIVAPPAGARI C M R. Design optimization of power and area of two-stage CMOS operational amplifier utilizing chaos grey wolf technique[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(7): 465–479. doi: 10.14569/IJACSA.2020.0110760.
|
| [21] |
KRAIEM H, AYMEN F, YAHYA L, et al. A comparison between particle swarm and grey wolf optimization algorithms for improving the battery autonomy in a photovoltaic system[J]. Applied Sciences, 2021, 11(16): 7732. doi: 10.3390/app11167732.
|
| [22] |
BAI Xiaotong, ZHENG Yuefeng, LU Yang, et al. Chain hybrid feature selection algorithm based on improved Grey Wolf Optimization algorithm[J]. PLoS One, 2024, 19(10): e0311602. doi: 10.1371/journal.pone.0311602.
|
| [23] |
PHADKE A and MEDRANO F A. Towards resilient UAV swarms–A breakdown of resiliency requirements in UAV swarms[J]. Drones, 2022, 6(11): 340. doi: 10.3390/drones6110340.
|
| [24] |
HANG Haotian, HUANG Chenchen, BARNETT A, et al. Self-reorganization and information transfer in massive schools of fish[EB/OL]. https://arxiv.org/abs/2505.05822, 2025.
|
| [25] |
WU Husheng, PENG Qiang, SHI Meimei, et al. A survey of UAV swarm task allocation based on the perspective of coalition formation[J]. International Journal of Swarm Intelligence Research, 2022, 13(1): 1–22. doi: 10.4018/IJSIR.311499.
|
| [26] |
QIN Boyu, ZHANG Dong, TANG Shuo, et al. Distributed grouping cooperative dynamic task assignment method of UAV swarm[J]. Applied Sciences, 2022, 12(6): 2865. doi: 10.3390/app12062865.
|
| [27] |
陈鹏宇. 基于深度强化学习的集群行为建模研究[D]. [硕士论文], 大连海洋大学, 2023. doi: 10.27821/d.cnki.gdlhy.2023.000385.
CHEN Pengyu. Research on collective behavior modeling based on deep reinforcement learning[D]. [Master dissertation], Dalian Ocean University, 2023. doi: 10.27821/d.cnki.gdlhy.2023.000385.
|
| [28] |
YIN Jia, CHAN Yanghao, DA JORNADA F H, et al. Analyzing and predicting non-equilibrium many-body dynamics via dynamic mode decomposition[J]. Journal of Computational Physics, 2023, 477: 111909. doi: 10.1016/j.jcp.2023.111909.
|
| [29] |
HANSEN E, BRUNTON S L, and SONG Zhuoyuan. Swarm modeling with dynamic mode decomposition[J]. IEEE Access, 2022, 10: 59508–59521. doi: 10.1109/ACCESS.2022.3179414.
|
| [30] |
FUJII K, KAWASAKI T, INABA Y, et al. Prediction and classification in equation-free collective motion dynamics[J]. PLoS Computational Biology, 2018, 14(11): e1006545. doi: 10.1371/journal.pcbi.1006545.
|
| [31] |
XIAO Yandong, LEI Xiaokang, ZHENG Zhicheng, et al. Perception of motion salience shapes the emergence of collective motions[J]. Nature Communications, 2024, 15(1): 4779. doi: 10.1038/s41467-024-49151-x.
|
| [32] |
刘明雍, 雷小康, 杨盼盼, 等. 群集运动的理论建模与实证分析[J]. 科学通报, 2014, 59(25): 2464–2483. doi: 10.1360/N972013-00045.
LIU Mingyong, LEI Xiaokang, YANG Panpan, et al. Progress of theoretical modelling and empirical studies on collective motion[J]. Chinese Science Bulletin, 2014, 59(25): 2464–2483. doi: 10.1360/N972013-00045.
|
| [33] |
COUZIN I D, KRAUSE J, JAMES R, et al. Collective memory and spatial sorting in animal groups[J]. Journal of Theoretical Biology, 2002, 218(1): 1–11. doi: 10.1006/jtbi.2002.3065.
|
| [34] |
邱华鑫, 段海滨, 范彦铭, 等. 鸽群交互模式切换模型及其同步性分析[J]. 智能系统学报, 2020, 15(2): 334–343. doi: 10.11992/tis.201904052.
QIU Huaxin, DUAN Haibin, FAN Yanming, et al. Pigeon flock interaction pattern switching model and its synchronization analysis[J]. CAAI Transactions on Intelligent Systems, 2020, 15(2): 334–343. doi: 10.11992/tis.201904052.
|
| [35] |
VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226–1229. doi: 10.1103/PhysRevLett.75.1226.
|
| [36] |
BUHL C, SUMPTER D J T, COUZIN I D, et al. From disorder to order in marching locusts[J]. Science, 2006, 312(5778): 1402–1406. doi: 10.1126/science.1125142.
|
| [37] |
CAVAGNA A and GIARDINA I. Bird flocks as condensed matter[J]. Annual Review of Condensed Matter Physics, 2014, 5: 183–207. doi: 10.1146/annurev-conmatphys-031113-133834.
|
| [38] |
QI Jingtao, BAI Liang, WEI Yingmei, et al. Emergence of adaptation of collective behavior based on visual perception[J]. IEEE Internet of Things Journal, 2023, 10(12): 10368–10384. doi: 10.1109/JIOT.2023.3238162.
|
| [39] |
ATTANASI A, CAVAGNA A, DEL CASTELLO L, et al. Emergence of collective changes in travel direction of starling flocks from individual birds' fluctuations[J]. Journal of the Royal Society Interface, 2015, 12(108): 20150319. doi: 10.1098/rsif.2015.0319.
|
| [40] |
邱浩楠, 何明, 韩伟, 等. 一种仿鸟群行为的无人机集群相变控制方法[J]. 现代防御技术, 2025, 53(1): 11–22. doi: 10.3969/j.issn.1009-086x.2025.01.002.
QIU Haonan, HE Ming, HAN Wei, et al. A phase transition control method for UAV swarm based on birds’ behaviors[J]. Modern Defense Technology, 2025, 53(1): 11–22. doi: 10.3969/j.issn.1009-086x.2025.01.002.
|
| [41] |
LIU Sicong, HE Ming, HAN Wei, et al. Distributed control algorithm for multi-agent cooperation: Leveraging spatial information perception[J]. International Journal of Robust and Nonlinear Control, 2025, 36(1): 312–328. doi: 10.1002/rnc.70138.
|
| [42] |
CHEN Haotian, HE Ming, LIU Jintao, et al. A novel fractional-order flocking algorithm for large-scale UAV swarms[J]. Complex & Intelligent Systems, 2023, 9(6): 6831–6844. doi: 10.1007/s40747-023-01107-2.
|
| [43] |
段海滨, 尤灵辰, 范彦铭, 等. 仿鸟群自推进机制的无人机集群相变控制[J]. 自动化学报, 2025, 51(5): 960–971. doi: 10.16383/j.aas.c240598.
DUAN Haibin, YOU Lingchen, FAN Yanming, et al. Phase transition control of UAV swarm based on bird-inspired self-propelled mechanism[J]. Acta Automatica Sinica, 2025, 51(5): 960–971. doi: 10.16383/j.aas.c240598.
|
| [44] |
WANG Ling and CHEN Guanrong. Synchronization of multi-agent systems with metric-topological interactions[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2016, 26(9): 094809. doi: 10.1063/1.4955086.
|
| [45] |
EL-FERIK S. Biologically based control of a fleet of unmanned aerial vehicles facing multiple threats[J]. IEEE Access, 2020, 8: 107146–107160. doi: 10.1109/ACCESS.2020.3000774.
|
| [46] |
AZZAM R, BOIKO I, and ZWEIRI Y. Swarm cooperative navigation using centralized training and decentralized execution[J]. Drones, 2023, 7(3): 193. doi: 10.3390/drones7030193.
|
| [47] |
夏家伟, 刘志坤, 朱旭芳, 等. 基于多智能体强化学习的无人艇集群集结方法[J]. 北京航空航天大学学报, 2023, 49(12): 3365–3376. doi: 10.13700/j.bh.1001-5965.2022.0088.
XIA Jiawei, LIU Zhikun, ZHU Xufang, et al. A coordinated rendezvous method for unmanned surface vehicle swarms based on multi-agent reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3365–3376. doi: 10.13700/j.bh.1001-5965.2022.0088.
|
| [48] |
PAPADOPOULOU M, HILDENBRANDT H, and HEMELRIJK C K. Diffusion during collective turns in bird flocks under predation[J]. Frontiers in Ecology and Evolution, 2023, 11: 1198248. doi: 10.3389/fevo.2023.1198248.
|
| [49] |
REYNOLDS C W. Flocks, herds and schools: A distributed behavioral model[C].The 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, USA, 1987: 25–34. doi: 10.1145/37401.37406.
|
| [50] |
KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90–98. doi: 10.1177/027836498600500106.
|
| [51] |
朱许, 张博涵, 王正宁, 等. 基于深度强化学习的无人机集群编队避障控制[J]. 飞行力学, 2025, 43(2): 22–28. doi: 10.13645/j.cnki.f.d.20250214.002.
ZHU Xu, ZHANG Bohan, WANG Zhengning, et al. Obstacle avoidance control of UAV cluster formation based on deep reinforcement learning[J]. Flight Dynamics, 2025, 43(2): 22–28. doi: 10.13645/j.cnki.f.d.20250214.002.
|
| [52] |
陈泽坤, 何杏宇. 一种无人机编队控制方法研究与仿真[J]. 建模与仿真, 2024, 13(3): 2662–2672. doi: 10.12677/mos.2024.133242.
CHEN Zekun and HE Xingyu. Research and simulation of a UAV formation control method[J]. Modeling and Simulation, 2024, 13(3): 2662–2672. doi: 10.12677/mos.2024.133242.
|
| [53] |
DONG Zhaoqi, WU Qizhen, and CHEN Lei. Reinforcement learning-based formation pinning and shape transformation for swarms[J]. Drones, 2023, 7(11): 673. doi: 10.3390/drones7110673.
|
| [54] |
WANG Chengjie, DENG Juan, ZHAO Hui, et al. Effect of Q-learning on the evolution of cooperation behavior in collective motion: An improved Vicsek model[J]. Applied Mathematics and Computation, 2024, 482: 128956. doi: 10.1016/j.amc.2024.128956.
|
| [55] |
JIN Weiqiang, TIAN Xingwu, SHI Bohang, et al. Enhanced UAV pursuit-evasion using Boids Modelling: A synergistic integration of bird swarm intelligence and DRL[J]. Computers, Materials and Continua, 2024, 80(3): 3523–3553. doi: 10.32604/cmc.2024.055125.
|
| [56] |
ZHAO Feifei, ZENG Yi, HAN Bing, et al. Nature-inspired self-organizing collision avoidance for drone swarm based on reward-modulated spiking neural network[J]. Patterns, 2022, 3(11): 100611. doi: 10.1016/J.PATTER.2022.100611.
|
| [57] |
谢觉非. 城市物流场景下基于复合人工势场的无人机避障控制技术研究[D]. [硕士论文], 电子科技大学, 2025. DOI: 10.27005/d.cnki.gdzku.2025.004243.
XIE Juefei. Research on UAV obstacle avoidance control technology based on composite artificial potential field in urban logistics scenarios[D]. [Master dissertation], University of Electronic Science and Technology of China, 2025. DOI: 10.27005/d.cnki.gdzku.2025.004243.
|
| [58] |
ABPEIKAR S, KASMARIK K, and GARRATT M. Reinforcement learning for collective motion tuning in the presence of extrinsic goals[C]. 35th Australasian Joint Conference on Artificial Intelligence, Perth, Australia, 2022: 761–774. doi: 10.1007/978-3-031-22695-3_53.
|
| [59] |
ZENG Qingli and NAIT-ABDESSELAM F. Multi-agent reinforcement learning-based extended Boid modeling for drone swarms[C]. ICC 2024-IEEE International Conference on Communications, Denver, USA, 2024: 1551–1556. doi: 10.1109/ICC51166.2024.10622479.
|
| [60] |
LIU Zhijun, LI Jie, SHEN Jian, et al. Leader–follower UAVs formation control based on a deep Q-network collaborative framework[J]. Scientific Reports, 2024, 14(1): 4674. doi: 10.1038/s41598-024-54531-w.
|
| [61] |
TANG Ruipeng, TANG Jianrui, TALIP M S A, et al. Enhanced multi agent coordination algorithm for drone swarm patrolling in durian orchards[J]. Scientific Reports, 2025, 15(1): 9139. doi: 10.1038/s41598-025-88145-7.
|
| [62] |
GUO Yunxiao, XIE Xinjia, ZHAO Runhao, et al. Cooperation and competition: Flocking with evolutionary multi-agent reinforcement learning[C]. International Conference on Neural Information Processing. Cham: Springer International Publishing, 2022: 271–283. doi: 10.1007/978-3-031-30105-6_23.
|
| [63] |
HAHN C, PHAN T, GABOR T, et al. Emergent escape-based flocking behavior using multi-agent reinforcement learning[C]. Artificial Life Conference Proceedings, 2019: 598–605. doi: 10.1162/isal_a_00226.
|
| [64] |
LAUDENZI G. Multi-agent deep reinforcement learning for drone swarms in static and dynamic environments[D]. [Master dissertation], Università of Bologna, 2024.
|
| [65] |
ABPEIKAR S, KASMARIK K, GARRATT M, et al. Automatic collective motion tuning using actor-critic deep reinforcement learning[J]. Swarm and Evolutionary Computation, 2022, 72: 101085. doi: 10.1016/j.swevo.2022.101085.
|
| [66] |
WANG Jun, ZHANG Yuchen, HE Leimin, et al. A bio-inspired adaptive formation architecture based on multi-agents with application to UAV swarm[C]. 2024 IEEE International Conference on Unmanned Systems (ICUS), Nanjing, China, 2024: 908–914. doi: 10.1109/ICUS61736.2024.10840152.
|
| [67] |
WANG Dongzi, DING Bo, and FENG Dawei. Meta reinforcement learning with generative adversarial reward from expert knowledge[C]. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 2020: 1–7. doi: 10.1109/ICISCAE51034.2020.9236869.
|
| [68] |
QIAN Feng, SU Kai, LIANG Xin, et al. Task assignment for UAV swarm saturation attack: A deep reinforcement learning approach[J]. Electronics, 2023, 12(6): 1292. doi: 10.3390/electronics12061292.
|
| [69] |
LI Chengshu, ZHANG Ruohan, WONG J, et al. BEHAVIOR-1K: A human-centered, embodied AI benchmark with 1, 000 everyday activities and realistic simulation[EB/OL]. https://arxiv.org/abs/2403.09227, 2024.
|
| [70] |
ANTONELO E A, COUTO G C K, and MÖLLER C. Exploring multimodal implicit behavior learning for vehicle navigation in simulated cities[EB/OL]. https://arxiv.org/abs/2509.15400, 2025.
|
| [71] |
CHI Pei, WEI Jiahong, WU Kun, et al. A bio-inspired decision-making method of UAV swarm for attack-defense confrontation via multi-agent reinforcement learning[J]. Biomimetics, 2023, 8(2): 222. doi: 10.3390/biomimetics8020222.
|
| [72] |
YUE Longfei, YANG Rennong, ZUO Jialiang, et al. Unmanned aerial vehicle swarm cooperative decision-making for SEAD mission: A hierarchical multiagent reinforcement learning approach[J]. IEEE Access, 2022, 10: 92177–92191. doi: 10.1109/ACCESS.2022.3202938.
|
| [73] |
ARRANZ R, CARRAMIÑANA D, DE MIGUEL G, et al. Application of deep reinforcement learning to UAV swarming for ground surveillance[J]. Sensors, 2023, 23(21): 8766. doi: 10.3390/s23218766.
|
| [74] |
CAI He, MA Fu, NI Ruifeng, et al. Bio-inspired swarm confrontation algorithm for complex hilly terrains[J]. Biomimetics, 2025, 10(5): 257. doi: 10.3390/biomimetics10050257.
|
| [75] |
WEI Xiaolong, CUI Wenpeng, HUANG Xianglin, et al. Hierarchical RNNs with graph policy and attention for drone swarm[J]. Journal of Computational Design and Engineering, 2024, 11(2): 314–326. doi: 10.1093/jcde/qwae031.
|
| [76] |
TAPPLER M, LOPEZ-MIGUEL I D, TSCHIATSCHEK S, et al. Rule-guided reinforcement learning policy evaluation and improvement[EB/OL]. https://arxiv.org/abs/2503.09270, 2025.
|
| [77] |
ZHANG Xiaorong, WANG Yufeng, DING Wenrui, et al. Bio-inspired fission–fusion control and planning of unmanned aerial vehicles swarm systems via reinforcement learning[J]. Applied Sciences, 2024, 14(3): 1192. doi: 10.3390/app14031192.
|
| [78] |
XU Dan and CHEN Gang. The research on intelligent cooperative combat of UAV cluster with multi-agent reinforcement learning[J]. Aerospace Systems, 2022, 5(1): 107–121. doi: 10.1007/s42401-021-00105-x.
|