Advanced Search
Turn off MathJax
Article Contents
LIU Song, LI Zihan, QIU Da, LUO Min, LAI Qiang. Modeling and Dynamic Analysis of Controllable Multi-double Scroll Memristor Hopfield Neural Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250972
Citation: LIU Song, LI Zihan, QIU Da, LUO Min, LAI Qiang. Modeling and Dynamic Analysis of Controllable Multi-double Scroll Memristor Hopfield Neural Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250972

Modeling and Dynamic Analysis of Controllable Multi-double Scroll Memristor Hopfield Neural Network

doi: 10.11999/JEIT250972 cstr: 32379.14.JEIT250972
Funds:  The Natural Science Foundation of Hubei Province of China (2024AFD068), The Fund of China University Research Innovation (2024IT115)
  • Received Date: 2025-09-24
  • Accepted Date: 2025-12-01
  • Rev Recd Date: 2025-11-30
  • Available Online: 2025-12-09
  • Objective: The human brain is a complex neural system capable of integrated information storage, computation, and parallel processing. The collective activity of neuronal populations processes and coordinates sensory inputs, producing highly nonlinear dynamics. Developing artificial neural network models and analyzing them with nonlinear dynamics theory is therefore of considerable scientific and practical interest. As a brain-inspired model, the Hopfield Neural Network (HNN) exhibits more diverse dynamics when a Memristor Hopfield Neural Network (MHNN) is formed by introducing a memristor into its structure. Among such systems, networks that generate Multi-Double Scroll (MDS) attractors are advantageous because their richer dynamical behavior and more complex topological structure offer strong potential for applications such as image encryption.Methods: A memristor model based on an arctangent-function series is proposed and introduced into a fully connected HNN. This forms an MHNN that incorporates electromagnetic radiation effects and memristive synaptic weights. The mechanism responsible for generating MDS chaotic attractors is examined through equilibrium-point analysis. Dynamical characteristics, including the effects of memristive synaptic coupling strength and initial offset boosting, are evaluated using bifurcation diagrams, Lyapunov-exponent spectra, and attraction basins. The system is then implemented on an FPGA platform.Results and Discussions: The MHNN generates an arbitrary number of multi-directional MDS chaotic attractors (Figs. 4, 5, 6). Adjusting the memristive synaptic coupling strength yields distinct coexisting attractor types (Figs. 7, 8). Multiple coexisting MDS chaotic attractors also emerge from modifications of the initial values (Figs. 9, 10, 11, 12). Hardware implementation on an FPGA (Figs. 13, 14) confirms the correctness and feasibility of the system.Conclusions: The proposed MHNN generates unidirectional, bidirectional, and tridirectional MDS chaotic attractors in phase space. The number of scrolls is tuned by the memristor control parameter. The system also shows initial offset boosting, and the number of coexisting attractors is regulated by this parameter. Higher-dimensional networks can be constructed by increasing the number of memristive synapses, demonstrating the broad generality of the model. Owing to its complex topology and rich dynamics, the network offers promising potential for engineering applications.
  • loading
  • [1]
    LIN Hairong, WANG Chunhua, CHEN Chengjie, et al. Neural bursting and synchronization emulated by neural networks and circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(8): 3397–3410. doi: 10.1109/TCSI.2021.3081150.
    [2]
    WANG Chunhua, LI Yufei, YANG Gang, et al. A review of fractional-order chaotic systems of memristive neural networks[J]. Mathematics, 2025, 13(10): 1600. doi: 10.3390/math13101600.
    [3]
    BAO Bocheng, ZHOU Chunlong, BAO Han, et al. Heterogeneous Hopfield neural network with analog implementation[J]. Chaos, Solitons & Fractals, 2025, 194: 116234. doi: 10.1016/j.chaos.2025.116234.
    [4]
    DENG Quanli, WANG Chunhua, SUN Yichuang, et al. Delay difference feedback memristive map: Dynamics, hardware implementation, and application in path planning[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2025, 72(12): 7993–8003. doi: 10.1109/TCSI.2025.3571961.
    [5]
    LUO Min, WANG Pingli, QIU Da, et al. Analysis and application of conditionally symmetric memristive chaotic systems with attractor growth phenomena[J]. Chaos, Solitons & Fractals, 2025, 200: 117027. doi: 10.1016/j.chaos.2025.117027.
    [6]
    赖强, 王君. 基于滑模趋近律的忆阻混沌系统有限和固定时间同步[J]. 物理学报, 2024, 73(18): 180503. doi: 10.7498/aps.73.20241013.

    LAI Qiang and WANG Jun. Finite and fixed-time synchronization of memristive chaotic systems based on sliding mode reaching law[J]. Acta Physica Sinica, 2024, 73(18): 180503. doi: 10.7498/aps.73.20241013.
    [7]
    赖强, 秦铭宏. 基于忆阻电磁辐射的极简环形HNN动力学行为增强研究[J]. 贵州师范大学学报: 自然科学版, 2025, 43(3): 1–11. doi: 10.16614/j.gznuj.zrb.2025.03.001.

    LAI Qiang and QIN Minghong. Enhanced dynamics of an extremely simple cyclic HNN based on memristive electromagnetic radiation[J]. Journal of Guizhou Normal University: Natural Sciences, 2025, 43(3): 1–11. doi: 10.16614/j.gznuj.zrb.2025.03.001.
    [8]
    贾美美, 曹佳伟, 白明明. 新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步[J]. 物理学报, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872.

    JIA Meimei, CAO Jiawei, and BAI Mingming. Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron[J]. Acta Physica Sinica, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872.
    [9]
    ZHANG Sen, LI Yongxin, WANG Xiaoping, et al. Initial offset-boosted coexisting hidden chaos and firing multistability in memristive ring neural network with hardware implementation[J]. IEEE Transactions on Industrial Electronics, 2025, 72(2): 2024–2033. doi: 10.1109/TIE.2024.3429616.
    [10]
    DOUBLA I S, RAMAKRISHNAN B, TABEKOUENG Z N, et al. Infinitely many coexisting hidden attractors in a new hyperbolic-type memristor-based HNN[J]. The European Physical Journal Special Topics, 2022, 231(11): 2371–2385. doi: 10.1140/epjs/s11734-021-00372-x.
    [11]
    BIAMOU A L M, TAMBA V K, TAGNE F K, et al. Fractional-order-induced symmetric multi-scroll chaotic attractors and double bubble bifurcations in a memristive coupled Hopfield neural networks[J]. Chaos, Solitons & Fractals, 2024, 178: 114267. doi: 10.1016/j.chaos.2023.114267.
    [12]
    DENG Quanli, WANG Chunhua, SUN Yichuang, et al. Discrete memristive conservative chaotic map: Dynamics, hardware implementation, and application in secure communication[J]. IEEE Transactions on Cybernetics, 2025, 55(8): 3926–3934. doi: 10.1109/TCYB.2025.3565333.
    [13]
    武花干, 边逸轩, 陈墨, 等. 忆阻耦合异构忆阻细胞神经网络的多稳态与相位同步研究[J]. 电子与信息学报, 2024, 46(9): 3818–3826. doi: 10.11999/JEIT240010.

    WU Huagan, BIAN Yixuan, CHEN Mo, et al. Multistable state and phase synchronization of memristor-coupled heterogeneous memristive cellular neural network[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3818–3826. doi: 10.11999/JEIT240010.
    [14]
    丁大为, 卢小齐, 胡永兵, 等. 分数阶忆阻耦合异质神经元的多稳态及硬件实现[J]. 物理学报, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525.

    DING Dawei, LU Xiaoqi, HU Yongbing, et al. Multistability of fractional-order memristor-coupled heterogeneous neurons and its hardware realization[J]. Acta Physica Sinica, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525.
    [15]
    赖强, 秦铭宏. 极简环形忆阻混沌神经网络的动力学分析与同步控制[J]. 电子与信息学报, 2025, 47(9): 3262–3273. doi: 10.11999/JEIT250212.

    LAI Qiang and QIN Minghong. Dynamic analysis and synchronization control of extremely simple cyclic memristive chaotic neural network[J]. Journal of Electronics & Information Technology, 2025, 47(9): 3262–3273. doi: 10.11999/JEIT250212.
    [16]
    BAO Han, HUA Mengjie, MA Jun, et al. Offset-control plane coexisting behaviors in two-memristor-based Hopfield neural network[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10526–10535. doi: 10.1109/TIE.2022.3222607.
    [17]
    WANG Chunhua, LIANG Junhui, and DENG Quanli. Dynamics of heterogeneous Hopfield neural network with adaptive activation function based on memristor[J]. Neural Networks, 2024, 178: 106408. doi: 10.1016/j.neunet.2024.106408.
    [18]
    LI Xuxin, LUO Min, ZHANG Bo, et al. Dynamic analysis and implementation of a multi-stable Hopfield neural network[J]. Chaos, Solitons & Fractals, 2025, 199: 116657. doi: 10.1016/j.chaos.2025.116657.
    [19]
    LI Haoyu, WANG Leimin, WAN Xiongbo, et al. Error transmission of chaos-based image encryption: Application to smart grid[J]. IEEE Transactions on Industrial Informatics, 2025, 21(12): 9889–9897. doi: 10.1109/TII.2025.3609139.
    [20]
    WU Chaojun, GUO Junxuan, YANG Ningning, et al. Analysis of piecewise-linear Hopfield neural network model based on a novel fractional-order memristor and its application to image encryption[J]. International Journal of Bifurcation and Chaos, 2025, 35(6): 2550065. doi: 10.1142/S0218127425500658.
    [21]
    L I Yongxin, LI Chunbiao, LEI Tengfei, et al. Offset boosting-entangled complex dynamics in the memristive Rulkov neuron[J]. IEEE Transactions on Industrial Electronics, 2024, 71(8): 9569–9579. doi: 10.1109/TIE.2023.3325558.
    [22]
    王雷敏, 程佳俊, 胡成, 等. 基于改进的忆阻器在字符联想记忆中的应用[J]. 电子与信息学报, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.

    WANG Leimin, CHENG Jiajun, HU Cheng, et al. Application of improved memristor in character associative memory[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.
    [23]
    WANG Chunhua, TANG Dong, LIN Hairong, et al. High-dimensional memristive neural network and its application in commercial data encryption communication[J]. Expert Systems with Applications, 2024, 242: 122513. doi: 10.1016/j.eswa.2023.122513.
    [24]
    BAO Han, DING Ruoyu, LIU Xiaofeng, et al. Memristor-cascaded Hopfield neural network with attractor scroll growth and STM32 hardware experiment[J]. Integration, 2024, 96: 102164. doi: 10.1016/j.vlsi.2024.102164.
    [25]
    LI Yongxin, LI Chunbiao, ZHANG Sen, et al. Offset boosting-oriented construction of multi-scroll attractor via a memristor model[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2025, 72(2): 918–931. doi: 10.1109/TCSI.2024.3455350.
    [26]
    ZHANG Sen, CHEN Chengjie, ZHANG Yunzhen, et al. Multidirectional multidouble-scroll hopfield neural network with application to image encryption[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 55(1): 735–746. doi: 10.1109/TSMC.2024.3489226.
    [27]
    LAI Qiang, WAN Zhiqiang, ZHANG Hui, et al. Design and analysis of multiscroll memristive Hopfield neural network with adjustable memductance and application to image encryption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7824–7837. doi: 10.1109/TNNLS.2022.3146570.
    [28]
    LI Jianghao, WANG Chunhua, and DENG Quanli. Symmetric multi-double-scroll attractors in Hopfield neural network under pulse controlled memristor[J]. Nonlinear Dynamics, 2024, 112(16): 14463–14477. doi: 10.1007/s11071-024-09791-6.
    [29]
    WAN Qiuzhen, CHEN Simiao, YANG Qiao, et al. Grid multi-scroll attractors in memristive Hopfield neural network under pulse current stimulation and multi-piecewise memristor[J]. Nonlinear Dynamics, 2023, 111(19): 18505–18521. doi: 10.1007/s11071–023-08834–8.
    [30]
    TANG Dong, WANG Chunhua, LIN Hairong, et al. Dynamics analysis and hardware implementation of multi-scroll hyperchaotic hidden attractors based on locally active memristive Hopfield neural network[J]. Nonlinear Dynamics, 2024, 112(2): 1511–1527. doi: 10.1007/s11071-023-09128-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (103) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return