| Citation: | ZHANG Jingsen, HOU Biao, LI Zhijie, BI Wenping, WU Zitong. A Fault Diagnosis Method for Flight Control System Combining Pose-Invariant Features and Semi-Supervised RDC-GAN Model[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250964 |
| [1] |
SINGH P K and SHARMA A. An intelligent WSN-UAV-based IoT framework for precision agriculture application[J]. Computers and Electrical Engineering, 2022, 100: 107912. doi: 10.1016/j.compeleceng.2022.107912.
|
| [2] |
林清, 王英勋, 蔡志浩, 等. 国外几型无人机事故统计及分析[C]. 2014(第五届)中国无人机大会论文集, 北京, 2014: 798–805.
LIN Qing, WANG Yingxun, CAI Zhihao, et al. Several types of foreign UAV accident statistics and analysis[C]. 2014 (5th) China UAV Conference, Beijing, China, 2014: 798–805. (查阅网上资料, 未找到本条文献英文信息, 请确认).
|
| [3] |
安雪, 李少波, 张仪宗, 等. 无人机飞控系统故障诊断技术研究综述[J]. 计算机工程与应用, 2023, 59(24): 1–15. doi: 10.3778/j.issn.1002-8331.2305-0137.
AN Xue, LI Shaobo, ZHANG Yizong, et al. Review of fault diagnosis techniques for UAV flight control systems[J]. Computer Engineering and Applications, 2023, 59(24): 1–15. doi: 10.3778/j.issn.1002-8331.2305-0137.
|
| [4] |
熊鹏伟, 李志农, 刘晨宇, 等. 基于自适应边际损失的小样本故障诊断方法[J]. 兵器装备工程学报, 2024, 45(9): 253–260. doi: 10.11809/bqzbgcxb2024.09.032.
XIONG Pengwei, LI Zhinong, LIU Chenyu, et al. Fault diagnosis method for small sample based on adaptive margin loss[J]. Journal of Ordnance Equipment Engineering, 2024, 45(9): 253–260. doi: 10.11809/bqzbgcxb2024.09.032.
|
| [5] |
刘金富, 黄頔, 王文林. 无人机故障诊断研究进展[J]. 控制工程, 2022, 29(3): 428–434. doi: 10.14107/j.cnki.kzgc.20210260.
LIU Jinfu, HUANG Di, and WANG Wenlin. Research progress of unmanned aerial vehicle fault diagnosis[J]. Control Engineering of China, 2022, 29(3): 428–434. doi: 10.14107/j.cnki.kzgc.20210260.
|
| [6] |
AVRAM R, ZHANG Xiaodong, and MUSE J. Quadrotor accelerometer and gyroscope sensor fault diagnosis using nonlinear adaptive estimation methods[J]. International Journal of Prognostics and Health Management, 2016, 7(1): 2328–2338. doi: 10.36001/ijphm.2016.v7i1.2328. (查阅网上资料,未找到本条文献页码信息,请确认).
|
| [7] |
LI Yang, LIU Zhenbao, JIA Zhen, et al. Fault diagnosis strategy for flight control rudder circuit based on SHAP interpretable analysis optimization transformer with attention mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 3534214. doi: 10.1109/TIM.2024.3470041.
|
| [8] |
SONG Xiaofei, ZHENG Zewei, GUAN Zhiyuan, et al. Deep learning fault diagnosis in flight control system of carrier-based aircraft[C]. 2022 IEEE 17th International Conference on Control & Automation, Naples, Italy, 2022: 492–497. doi: 10.1109/ICCA54724.2022.9831899.
|
| [9] |
MELLINGER D and KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]. 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, 2011: 2520–2525. doi: 10.1109/ICRA.2011.5980409.
|
| [10] |
KIM D, HEO B, and HAN D. DenseNets reloaded: Paradigm shift beyond ResNets and ViTs[C]. 18th European Conference on Computer Vision. Milan, Italy, 2024: 395–415. doi: 10.1007/978-3-031-72646-0_23.
|
| [11] |
LE Xiangli, JIN Bo, CUI Gen, et al. RflyMAD: A dataset for multicopter fault detection and health assessment[J]. The International Journal of Robotics Research, 2025, 44(7): 1081–1092. doi: 10.1177/02783649241305153.
|
| [12] |
沈延安, 杨克泉, 陈强. 基于PSO优化小波神经网络的无人机动力系统故障诊断模型[J]. 兵器装备工程学报, 2024, 45(4): 168–175. doi: 10.11809/bqzbgcxb2024.04.021.
SHEN Yanan, YANG Kequan, and CHEN Qiang. UAV power based on PSO optimized wavelet neural network system fault diagnosis model[J]. Journal of Ordnance Equipment Engineering, 2024, 45(4): 168–175. doi: 10.11809/bqzbgcxb2024.04.021.
|
| [13] |
孙菱, 张振宇, 郭健, 等. 基于RF-LSTM模型的无人机执行器故障诊断算法[J]. 南京理工大学学报, 2024, 48(5): 661–668. doi: 10.14177/j.cnki.32-1397n.2024.48.05.014.
SUN Ling, ZHANG Zhenyu, GUO Jian, et al. Fault diagnosis algorithm for UAV actuator based on RF-LSTM model[J]. Journal of Nanjing University of Science and Technology, 2024, 48(5): 661–668. doi: 10.14177/j.cnki.32-1397n.2024.48.05.014.
|
| [14] |
XIONG Pengwei, LI Zhinong, LI Yunlong, et al. Fault diagnosis of UAV based on adaptive Siamese network with limited data[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3531711. doi: 10.1109/TIM.2023.3301898.
|
| [15] |
LI Yang, JIA Zhen, LIU Zhenbao, et al. Interpretable intelligent fault diagnosis strategy for fixed-wing UAV elevator fault diagnosis based on improved cross entropy loss[J]. Measurement Science and Technology, 2024, 35(7): 076110. doi: 10.1088/1361-6501/ad3666.
|
| [16] |
LUO Qinyuan, CHEN Jinglong, ZI Yangyang, et al. A synchronization-induced cross-modal contrastive learning strategy for fault diagnosis of electromechanical systems under semi-supervised learning with current signal[J]. Expert Systems with Applications, 2024, 249: 123801. doi: 10.1016/j.eswa.2024.123801.
|
| [17] |
CHEN Xin, CHEN Zaigang, GUO Liang, et al. Pseudo-label assisted semi-supervised adversarial enhancement learning for fault diagnosis of gearbox degradation with limited data[J]. Mechanical Systems and Signal Processing, 2025, 224: 112108. doi: 10.1016/j.ymssp.2024.112108.
|
| [18] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
| [19] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 2261–2269. doi: 10.1109/CVPR.2017.243.
|
| [20] |
LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]. Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA, 2022: 11966–11976. doi: 10.1109/CVPR52688.2022.01167.
|