| Citation: | CHEN Yang, MA Huan, JI Zhi, LI Ying Qi, LIANG Jia Yu, GUO Lan. Optimization of Energy Consumption in Semantic Communication Networks for Image Recovery Tasks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250915 |
| [1] |
张平. 语义通信: 未来通信系统的智简之道[J]. 中兴通讯技术, 2024, 30(1): 1. doi: 10.12142/ZTETJ.202401001.
ZHANG Ping. Semantic communication: The intelligent and concise way to the future communication system[J]. ZTE Technology Journal, 2024, 30(1): 1. doi: 10.12142/ZTETJ.202401001.
|
| [2] |
朱政宇, 梁馨月, 孙钢灿, 等. 智能超表面赋能语义通信系统研究综述[J]. 电子与信息学报, 2025, 47(2): 287–295. doi: 10.11999/JEIT240984.
ZHU Zhengyu, LIANG Xinyue, SUN Gangcan, et al. Research overview of reconfigurable intelligent surface enabled semantic communication systems[J]. Journal of Electronics & Information Technology, 2025, 47(2): 287–295. doi: 10.11999/JEIT240984.
|
| [3] |
ZHANG Ping, LIU Yiming, SONG Yile, et al. Advances and challenges in semantic communications: A systematic review[J]. National Science Open, 2024, 3(4): 20230029. doi: 10.1360/nso/20230029.
|
| [4] |
SHAO Yulin, CAO Qi, and GÜNDÜZ D. A theory of semantic communication[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 12211–12228. doi: 10.1109/TMC.2024.3406375.
|
| [5] |
PENG Xiang, QIN Zhijin, TAO Xiaoming, et al. A robust image semantic communication system with multi-scale vision transformer[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(4): 1278–1291. doi: 10.1109/JSAC.2025.3531413.
|
| [6] |
VAN CHIEN T, PHONG L H, PHUC D X, et al. Image restoration under semantic communications[C]. 2022 International Conference on Advanced Technologies for Communications, Ha Noi, Vietnam, 2022: 332–337. DOI: 10.1109/ATC55345.2022.9943000.
|
| [7] |
ZHANG Guangyi, HU Qiyu, QIN Zhijin, et al. A unified multi-task semantic communication system for multimodal data[J]. IEEE Transactions on Communications, 2024, 72(7): 4101–4116. doi: 10.1109/TCOMM.2024.3364990.
|
| [8] |
YAN Zhigang and LI Dong. Semantic communications for digital signals via carrier images[J]. IEEE Wireless Communications Letters, 2025, 14(6): 1816–1820. doi: 10.1109/LWC.2025.3557843.
|
| [9] |
LIANG Chengyang and LI Dong. Image generation with supervised selection based on multimodal features for semantic communications[J]. IEEE Transactions on Communications. doi: 10.1109/TCOMM.2025.3615798.
|
| [10] |
DAI Jincheng, WANG Sixian, TAN Kailin, et al. Nonlinear transform source-channel coding for semantic communications[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(8): 2300–2316. doi: 10.1109/JSAC.2022.3180802.
|
| [11] |
YANG Pujing, ZHANG Guangyi, and CAI Yunlong. Rate-adaptive generative semantic communication using conditional diffusion models[J]. IEEE Wireless Communications Letters, 2025, 14(2): 539–543. doi: 10.1109/LWC.2024.3515656.
|
| [12] |
YUAN Weiwen, REN Jinke, WANG Chongjie, et al. Generative semantic communication for joint image transmission and segmentation[C]. 2025 IEEE International Conference on Communications Workshops, Montreal, Canada, 2025: 1110–1115. doi: 10.1109/ICCWorkshops67674.2025.11162317.
|
| [13] |
ZHANG Guangyi, YANG Pujing, CAI Yunlong, et al. From analog to digital: Multi-order digital joint coding-modulation for semantic communication[J]. IEEE Transactions on Communications, 2025, 73(6): 4257–4271. doi: 10.1109/TCOMM.2024.3511949.
|
| [14] |
TUNG T Y, KURKA D B, JANKOWSKI M, et al. DeepJSCC-Q: Constellation constrained deep joint source-channel coding[J]. IEEE Journal on Selected Areas in Information Theory, 2022, 3(4): 720–731. doi: 10.1109/JSAIT.2022.3231042.
|
| [15] |
YANG Zhaohui, CHEN Mingzhe, ZHANG Zhaoyang, et al. Energy efficient semantic communication over wireless networks with rate splitting[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1484–1495. doi: 10.1109/JSAC.2023.3240713.
|
| [16] |
ZHANG Hongwei, SHAO Shuo, TAO Meixia, et al. Deep learning-enabled semantic communication systems with task-unaware transmitter and dynamic data[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(1): 170–185. doi: 10.1109/JSAC.2022.3221991.
|
| [17] |
翟凯. 基于MMSE检测的MIMO及大规模MIMO系统性能精确分析[D]. [博士论文], 西南交通大学, 2021. doi: 10.27414/d.cnki.gxnju.2021.000015.
ZHAI Kai. Exact performance analysis of MIMO and massive MIMO systems with MMSE receiver[D]. [Ph. D. dissertation], Southwest Jiaotong University, 2021. doi: 10.27414/d.cnki.gxnju.2021.000015.
|
| [18] |
QIN Langtian, LU Hancheng, CHEN Yuang, et al. Toward decentralized task offloading and resource allocation in user-centric MEC[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 11807–11823. doi: 10.1109/TMC.2024.3399766.
|
| [19] |
张峻伟, 吕帅, 张正昊, 等. 基于样本效率优化的深度强化学习方法综述[J]. 软件学报, 2022, 33(11): 4217–4238. doi: 10.13328/j.cnki.jos.006391.
ZHANG Junwei, LÜ Shuai, ZHANG Zhenghao, et al. Survey on deep reinforcement learning methods based on sample efficiency optimization[J]. Journal of Software, 2022, 33(11): 4217–4238. doi: 10.13328/j.cnki.jos.006391.
|
| [20] |
HU Siyue and HU Jian. Noisy-MAPPO: Noisy advantage values for cooperative multi-agent actor-critic methods[J]. arXiv: 2106.14334v1, 2021. doi: 10.48550/arXiv.2106.14334. (查阅网上资料,未能确认文献类型,请确认).
|
| [21] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv: 1707.06347, 2017. doi: 10.48550/arXiv.1707.06347.(查阅网上资料,未能确认文献类型,请确认).
|
| [22] |
LILLICRAP T P, HUNT J J, Pritzel A, et al. Continuous control with deep reinforcement learning[C]. Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016.
|