| Citation: | LI Mengyao, ZHANG Pengfei, FENG Hao, MA Zhongfa. Research on Snow Depth Measurement Technology Based on Dual-Band Microwave Open Resonant Cavity[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250724 |
| [1] |
KOETSE M J and RIETVELD P. The impact of climate change and weather on transport: An overview of empirical findings[J]. Transportation Research Part D: Transport and Environment, 2009, 14(3): 205–221. doi: 10.1016/j.trd.2008.12.004.
|
| [2] |
LU Huapu, CHEN Mingyu, and KUANG Wenbo. The impacts of abnormal weather and natural disasters on transport and strategies for enhancing ability for disaster prevention and mitigation[J]. Transport Policy, 2020, 98: 2–9. doi: 10.1016/j.tranpol.2019.10.006.
|
| [3] |
李海, 冯开泓, 杨文恒, 等. 机载双极化气象雷达多种降水粒子回波仿真方法研究[J]. 电子与信息学报, 2023, 45(8): 2945–2954. doi: 10.11999/JEIT220830.
LI Hai, FENG Kaihong, YANG Wenheng, et al. Study on simulation method of precipitation particle echo of airborne dual-polarization weather radar[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2945–2954. doi: 10.11999/JEIT220830.
|
| [4] |
GORZELANCZYK P. Impact of weather conditions and road type on traffic safety[J]. European Transport Studies, 2025, 2: 100042. doi: 10.1016/j.ets.2025.100042.
|
| [5] |
SHI H, SOHN B J, DYBKJÆR G, et al. Simultaneous estimation of wintertime sea ice thickness and snow depth from space-borne freeboard measurements[J]. The Cryosphere, 2020, 14(11): 3761–3783. doi: 10.5194/tc-14-3761-2020.
|
| [6] |
王奉帅, 王华青, 贾贝. 基于北斗系统的雪层厚度测量方法[J]. 信息记录材料, 2023, 24(4): 204–206. doi: 10.16009/j.cnki.cn13-1295/tq.2023.04.061.
WANG Fengshuai, WANG Huaqing, and JIA Bei. Snow layer thickness measurement method based on the Beidou system[J]. Information Recording Materials, 2023, 24(4): 204–206. doi: 10.16009/j.cnki.cn13-1295/tq.2023.04.061. (查阅网上资料,未找到本条文献英文信息,请确认).
|
| [7] |
JANS J F, BEERNAERT E, DE BREUCK M, et al. Sensitivity of sentinel-1 C-band SAR backscatter, polarimetry and interferometry to snow accumulation in the Alps[J]. Remote Sensing of Environment, 2025, 316: 114477. doi: 10.1016/j.rse.2024.114477.
|
| [8] |
孙占义, 张江齐, 张鹏. 雷达技术在珠穆朗玛峰冰雪层厚度测定中的应用[J]. 物探与化探, 2006, 30(2): 179–182. doi: 10.3969/j.issn.1000-8918.2006.02.021.
SUN Zhanyi, ZHANG Jiangqi, and ZHANG Peng. The application of radar technique to determining niveal bed thickness of Mount Qomolangma[J]. Geophysical and Geochemical Exploration, 2006, 30(2): 179–182. doi: 10.3969/j.issn.1000-8918.2006.02.021.
|
| [9] |
KANAGARATNAM P, MARKUS T, LYTLE V, et al. Ultrawideband radar measurements of thickness of snow over sea ice[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(9): 2715–2724. doi: 10.1109/TGRS.2007.900673.
|
| [10] |
LIU Hai, TAKAHASHI K, and SATO M. Measurement of dielectric permittivity and thickness of snow and ice on a brackish lagoon using GPR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 820–827. doi: 10.1109/JSTARS.2013.2266792.
|
| [11] |
RYAN W A, DOESKEN N J, and FASSNACHT S R. Evaluation of ultrasonic snow depth sensors for U. S. snow measurements[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(5): 667–684. doi: 10.1175/2007JTECHA947.1.
|
| [12] |
王瑞, 秦建敏, 程琦, 等. 基于空气-雪层透光性差异的雪层厚度定点连续检测传感器[C]. 第十四届全国敏感元件与传感器学术会议论文集, 成都, 中国, 2016: 667–670.
WANG Rui, QIN Jianmin, CHENG Qi, et al. The snow-thickness detection sensor based on the difference of light transmission properties between air and snow[C]. 14th Sensors and Transducers Conference of China, Chengdu, China, 2016: 667–670. (查阅网上资料, 未找到本条文献标黄部分信息, 请确认).
|
| [13] |
HERMAN K, GUDRA T, OPIELIŃSKI K, et al. A study of a parametric method for the snow reflection coefficient estimation using air-coupled ultrasonic waves[J]. Sensors, 2020, 20(15): 4267. doi: 10.3390/s20154267.
|
| [14] |
GARCÍA-MAROTO D, DURÁN L, and DE PABLO HERNÁNDEZ M Á. New approaches and error assessment to snow cover thickness and density using air temperature data at different heights[J]. Science of the Total Environment, 2024, 926: 171744. doi: 10.1016/j.scitotenv.2024.171744.
|
| [15] |
KINAR N J and POMEROY J W. Measurement of the physical properties of the snowpack[J]. Reviews of Geophysics, 2015, 53(2): 481–544. doi: 10.1002/2015RG000481.
|
| [16] |
PROKOP A, SCHIRMER M, RUB M, et al. A comparison of measurement methods: Terrestrial laser scanning, tachymetry and snow probing for the determination of the spatial snow-depth distribution on slopes[J]. Annals of Glaciology, 2008, 49: 210–216. doi: 10.3189/172756408787814726.
|
| [17] |
RODRIGUEZ-ALVAREZ N, AGUASCA A, VALENCIA E, et al. Snow thickness monitoring using GNSS measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1109–1113. doi: 10.1109/LGRS.2012.2190379.
|
| [18] |
MATZLER C. Microwave permittivity of dry snow[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 573–581. doi: 10.1109/36.485133.
|
| [19] |
SHAH A, NIKSAN O, and ZARIFI M H. Planar microwave sensor for localized ice and snow sensing[R]. SAE Technical Paper 2023-01-1432, 2023. doi: 10.4271/2023-01-1432.
|
| [20] |
XIE Jianbing, LI Zihan, LU Boshang, et al. A flexible CSRR-based array icing sensor with defective microstrip structure[J]. IEEE Sensors Journal, 2024, 24(12): 19934–19943. doi: 10.1109/JSEN.2024.3395435.
|
| [21] |
PRIYANKA G and RAO N. Simplified formulation for calculation of thickness of a single layered dielectric material using an open-ended rectangular waveguide[C]. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2021: 1–7. doi: 10.1109/ICCCNT51525.2021.9579802.
|
| [22] |
SIMON D S. Introduction to Quantum Science and Technology[M]. Cham: Springer, 2025: 697–713. doi: 10.1007/978-3-031-81315-3.
|
| [23] |
方正新. 矩形压窄波导天线设计[D]. [硕士论文], 电子科技大学, 2009.
FANG Zhengxin. Design of rectangular narrow-waveguide antenna[D]. [Master dissertation], University of Electronic Science and Technology of China, 2009. (查阅网上资料, 未找到本条文献英文信息, 请确认).
|
| [24] |
胡金花, 李勇, 谭建国, 等. 玻璃纤维增强复合材料局部减薄损伤的微波无损定量检测[J]. 传感器与微系统, 2020, 39(3): 113–116. doi: 10.13873/J.1000-9787(2020)03-0113-04.
HU Jinhua, LI Yong, TAN Jianguo, et al. Nondestructive quantitative detection of localized thickness loss in GFRP composites via microwave NDT[J]. Transducer and Microsystem Technologies, 2020, 39(3): 113–116. doi: 10.13873/J.1000-9787(2020)03-0113-04.
|
| [25] |
鲁戈舞, 张剑, 杨洁颖, 等. 频率选择表面天线罩研究现状与发展趋势[J]. 物理学报, 2013, 62(19): 198401. doi: 10.7498/aps.62.198401.
LU Gewu, ZHANG Jian, YANG Jieying, et al. Status and development of frequency selective surface radome[J]. Acta Physica Sinica, 2013, 62(19): 198401. doi: 10.7498/aps.62.198401.
|
| [26] |
NI Junzhe, ZHAO Wenbo, PANG Xiaoyu, et al. A fifth-order X-band frequency-selective surface with high selectivity and angular stability based on 3-D coupling slot[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(7): 5743–5753. doi: 10.1109/TAP.2024.3414601.
|
| [27] |
HALLIKAINEN M, ULABY F, and ABDELRAZIK M. Dielectric properties of snow in the 3 to 37 GHz range[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(11): 1329–1340. doi: 10.1109/TAP.1986.1143757.
|