| Citation: | LI Bing, HU Weijie, LIU Xia. Research on Segmentation Algorithm of Oral and Maxillofacial Panoramic X-ray Images under Dual-domain Multiscale State Space Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250639 |
| [1] |
RUAN Jiacheng, XIE Mingye, GAO Jingsheng, et al. EGE-UNet: An efficient group enhanced UNet for skin lesion segmentation[C]. Proceedings of the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada: Springer, 2023: 481–490. doi: 10.1007/978-3-031-43901-8_46.
|
| [2] |
CHEN Junren, CHEN Rui, WANG Wei, et al. TinyU-Net: Lighter yet better U-Net with cascaded multi-receptive fields[C]. Proceedings of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, Marrakesh, Morocco: Springer, 2024: 626–635. doi: 10.1007/978-3-031-72114-4_60.
|
| [3] |
CAO Hu, WANG Yueyue, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]. Proceedings of the 17th European Conference on Computer Vision, Tel Aviv, Israel: Springer, 2023: 205–218. doi: 10.1007/978-3-031-25066-8_9.
|
| [4] |
CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv: 2102.04306, 2021. doi: 10.48550/arXiv.2102.04306. (查阅网上资料,不确定本条文献的格式和类型,请确认).
|
| [5] |
SUN Guanqun, PAN Yizhi, KONG Weikun, et al. DA-TransUNet: Integrating spatial and channel dual attention with transformer U-Net for medical image segmentation[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 1398237. doi: 10.3389/fbioe.2024.1398237.
|
| [6] |
LEE H H, BAO Shunxing, HUO Yuankai, et al. 3D UX-Net: A large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation[C]. Proceedings of the 11th International Conference on Learning Representations, Kigali, Rwanda: ICLR, 2023.
|
| [7] |
ZHOU Hongyu, GUO Jiansen, ZHANG Yinghao, et al. nnFormer: Volumetric medical image segmentation via a 3D transformer[J]. IEEE Transactions on Image Processing, 2023, 32: 4036–4045. doi: 10.1109/TIP.2023.3293771.
|
| [8] |
HATAMIZADEH A, NATH V, TANG Yucheng, et al. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images[C]. Proceedings of the 7th International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer, 2021: 272–284. doi: 10.1007/978-3-031-08999-2_22. (查阅网上资料,未找到出版地信息,请确认).
|
| [9] |
GU A and DAO T. Mamba: Linear-time sequence modeling with selective state spaces[J]. arXiv preprint arXiv: 2312.00752, 2023. doi: 10.48550/arXiv.2312.00752. (查阅网上资料,不确定本条文献的格式和类型,请确认).
|
| [10] |
RUAN Jiacheng, LI Jincheng, and XIANG Suncheng. VM-UNet: Vision mamba UNet for medical image segmentation[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2025. doi: 10.1145/3767748. (查阅网上资料,未找到卷期页码信息,请确认).
|
| [11] |
HAO Jing, ZHU Yonghui, HE Lei, et al. T-Mamba: A unified framework with long-range dependency in dual-domain for 2D & 3D tooth segmentation[J]. arXiv preprint arXiv: 2404.01065, 2024. doi: 10.48550/arXiv.2404.01065. (查阅网上资料,不确定本条文献的格式和类型,请确认).
|
| [12] |
LIN Xian, XIANG Yangyang, YU Li, et al. Beyond adapting SAM: Towards end-to-end ultrasound image segmentation via auto prompting[C]. Proceedings of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention, Marrakesh, Morocco: Springer, 2024: 24–34. doi: 10.1007/978-3-031-72111-3_3.
|
| [13] |
LIN P L, HUANG P Y, HUANG P W, et al. Teeth segmentation of dental periapical radiographs based on local singularity analysis[J]. Computer Methods and Programs in Biomedicine, 2014, 113(2): 433–445. doi: 10.1016/j.cmpb.2013.10.015.
|
| [14] |
MAHDI F P and KOBASHI S. Quantum particle swarm optimization for multilevel thresholding-based image segmentation on dental X-ray images[C]. Proceedings of the Joint 10th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium on Advanced Intelligent Systems, Toyama, Japan: IEEE, 2018: 1148–1153. doi: 10.1109/SCIS-ISIS.2018.00181.
|
| [15] |
SON L H and TUAN T M. A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation[J]. Expert Systems with Applications, 2016, 46: 380–393. doi: 10.1016/j.eswa.2015.11.001.
|
| [16] |
PUSHPARAJ V, GURUNATHAN U, ARUMUGAM B, et al. An effective numbering and classification system for dental panoramic radiographs[C]. Proceedings of the 4th International Conference on Computing, Communications and Networking Technologies, Tiruchengode, India: IEEE, 2013: 1–8. doi: 10.1109/ICCCNT.2013.6726480.
|
| [17] |
ALSMADI M K. A hybrid Fuzzy C-Means and Neutrosophic for jaw lesions segmentation[J]. Ain Shams Engineering Journal, 2018, 9(4): 697–706. doi: 10.1016/j.asej.2016.03.016.
|
| [18] |
KOCH T L, PERSLEV M, IGEL C, et al. Accurate segmentation of dental panoramic radiographs with U-NETS[C]. Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging, Venice, Italy: IEEE, 2019: 15–19. doi: 10.1109/ISBI.2019.8759563.
|
| [19] |
ZANNAH R, BASHAR M, MUSHFIQ R B, et al. Semantic segmentation on panoramic dental X-ray images using U-Net architectures[J]. IEEE Access, 2024, 12: 44598–44612. doi: 10.1109/ACCESS.2024.3380027.
|
| [20] |
IMAK A, ÇELEBI A, POLAT O, et al. ResMIBCU-Net: An encoder–decoder network with residual blocks, modified inverted residual block, and bi-directional ConvLSTM for impacted tooth segmentation in panoramic X-ray images[J]. Oral Radiology, 2023, 39(4): 614–628. doi: 10.1007/s11282-023-00677-8.
|
| [21] |
LI Yunxiang, WANG Shuai, WANG Jun, et al. GT U-Net: A U-net like group transformer network for tooth root segmentation[C]. Proceedings of the Machine Learning in Medical Imaging: 12th International Workshop, Strasbourg, France: Springer, 2021: 386–395. doi: 10.1007/978-3-030-87589-3_40.
|
| [22] |
SHENG Chen, WANG Lin, HUANG Zhenhuan, et al. Transformer-based deep learning network for tooth segmentation on panoramic radiographs[J]. Journal of Systems Science and Complexity, 2023, 36(1): 257–272. doi: 10.1007/s11424-022-2057-9.
|
| [23] |
LI Pengcheng, GAO Chenqiang, LIAN Chunfeng, et al. Spatial prior-guided bi-directional cross-attention transformers for tooth instance segmentation[J]. IEEE Transactions on Medical Imaging, 2024, 43(11): 3936–3948. doi: 10.1109/TMI.2024.3406015.
|
| [24] |
LIU Yue, TIAN Yunjie, ZHAO Yuzhong, et al. VMamba: Visual state space model[C]. Proceedings of the 38th International Conference on Neural Information Processing Systems, Vancouver, Canada: Curran Associates Inc. , 2024: 3273.
|
| [25] |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704.04861, 2017. doi: 10.48550/arXiv.1704.04861. (查阅网上资料,不确定本条文献的格式和类型,请确认).
|
| [26] |
SI Yunzhong, XU Huiying, ZHU Xinzhong, et al. SCSA: Exploring the synergistic effects between spatial and channel attention[J]. Neurocomputing, 2025, 634: 129866. doi: 10.1016/j.neucom.2025.129866.
|
| [27] |
SUN Hongkun, XU Jing, and DUAN Yuping. ParaTransCNN: Parallelized transcnn encoder for medical image segmentation[J]. arXiv preprint arXiv: 2401.15307, 2024. doi: 10.48550/arXiv.2401.15307. (查阅网上资料,不确定本条文献的格式和类型,请确认).
|