Advanced Search
Turn off MathJax
Article Contents

doi: 10.11999/JEIT250305 cstr: 32379.14.JEIT250305
Funds:  Shandong Provincial Natural Science Foundation (ZR2023MF085), The National Natural Science Foundation of China (62401630, U23A20277)
  • Received Date: 2025-04-25
  • Rev Recd Date: 2025-08-20
  • Available Online: 2025-08-26
  • loading
  • [1]
    SISINNI E, SAIFULLAH A, HAN Song, et al. Industrial Internet of Things: Challenges, opportunities, and directions[J]. IEEE Transactions on Industrial Informatics, 2018, 14(11): 4724–4734. doi: 10.1109/TII.2018.2852491.
    [2]
    中国通信院. 主要国家和地区推动制造业数字化转型的政策研究报告[R]. 2022. (查阅网上资料, 请补充报告编号及对应的英文信息).
    [3]
    CERQUITELLI T, PAGLIARI D J, CALIMERA A, et al. Manufacturing as a data-driven practice: Methodologies, technologies, and tools[J]. Proceedings of the IEEE, 2021, 109(4): 399–422. doi: 10.1109/JPROC.2021.3056006.
    [4]
    LETAIEF K B, SHI Yuanming, LU Jianmin, et al. Edge artificial intelligence for 6G: Vision, enabling technologies, and applications[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 5–36. doi: 10.1109/JSAC.2021.3126076.
    [5]
    MADDIKUNTA P K R, PHAM Q V, PRABADEVI B, et al. Industry 5.0: A survey on enabling technologies and potential applications[J]. Journal of Industrial Information Integration, 2022, 26: 100257. doi: 10.1016/J.JII.2021.100257.
    [6]
    TALLAT R, HAWBANI A, WANG Xingfu, et al. Navigating industry 5.0: A survey of key enabling technologies, trends, challenges, and opportunities[J]. IEEE Communications Surveys & Tutorials, 2024, 26(2): 1080–1126. doi: 10.1109/COMST.2023.3329472.
    [7]
    洪学海, 蔡迪. 面向“互联网+”的OT与IT融合发展研究[J]. 中国工程科学, 2020, 22(4): 18–23. doi: 10.15302/J-SSCAE-2020.04.015.

    HONG Xuehai and CAI Di. Convergence of OT and IT for internet plus[J]. Strategic Study of CAE, 2020, 22(4): 18–23. doi: 10.15302/J-SSCAE-2020.04.015.
    [8]
    关新平, 陈彩莲, 杨博, 等. 工业网络系统的感知-传输-控制一体化: 挑战和进展[J]. 自动化学报, 2019, 45(1): 25–36. doi: 10.16383/J.AAS.C180484.

    GUAN Xinping, CHEN Cailian, YANG Bo, et al. Towards the integration of sensing, transmission and control for industrial network systems: Challenges and recent developments[J]. Acta Automatica Sinica, 2019, 45(1): 25–36. doi: 10.16383/J.AAS.C180484.
    [9]
    中国信通院. 中国智能制造发展研究报告-智能工厂[R]. 2022. (查阅网上资料, 请补充报告编号及对应的英文信息).
    [10]
    GANZHA M, PAPRZYCKI M, PAWŁOWSKI W, et al. Semantic interoperability in the Internet of Things: An overview from the INTER-IoT perspective[J]. Journal of Network and Computer Applications, 2017, 81: 111–124. doi: 10.1016/J.JNCA.2016.08.007.
    [11]
    HAZRA A, ADHIKARI M, AMGOTH T, et al. A comprehensive survey on interoperability for IIoT: Taxonomy, standards, and future directions[J]. ACM Computing Surveys, 2021, 55(1): 9. doi: 10.1145/3485130.
    [12]
    YAO Shengshi, LU Yanpeng, NIU Kai, et al. Semantic information processing for interoperability in the Industrial Internet of Things[J]. Fundamental Research, 2024, 4(1): 8–12. doi: 10.1016/J.FMRE.2023.06.003.
    [13]
    AHMED I, JEON G, and PICCIALLI F. From artificial intelligence to explainable artificial intelligence in industry 4.0: A survey on what, how, and where[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5031–5042. doi: 10.1109/TII.2022.3146552.
    [14]
    LENG Jiewu, ZHU Xiaofeng, HUANG Zhiqiang, et al. Unlocking the power of industrial artificial intelligence towards Industry 5.0: Insights, pathways, and challenges[J]. Journal of Manufacturing Systems, 2024, 73: 349–363. doi: 10.1016/J.JMSY.2024.02.010.
    [15]
    DeepSeek-AI. Deepseek-v3 technical report[J]. arXiv preprint arXiv: 2412.19437, 2025. doi: 10.48550/arXiv.2412.19437. (查阅网上资料,请确认本条文献文献类型及格式是否正确).
    [16]
    LIANG Jiachen, ZHANG Shusheng, ZHANG Yajun, et al. A knowledge graph-based approach to modeling & representation for machining process design intent[J]. Advanced Engineering Informatics, 2024, 62: 102645. doi: 10.1016/J.AEI.2024.102645.
    [17]
    DAI Wenbin, NISHI H, VYATKIN V, et al. Industrial edge computing: Enabling embedded intelligence[J]. IEEE Industrial Electronics Magazine, 2019, 13(4): 48–56. doi: 10.1109/MIE.2019.2943283.
    [18]
    ZHANG Mingqiang, ZHANG Haixia, YUAN Dongfeng, et al. Learning-based sparse data reconstruction for compressed data aggregation in IoT networks[J]. IEEE Internet of Things Journal, 2021, 8(14): 11732–11742. doi: 10.1109/JIOT.2021.3059735.
    [19]
    ZHANG Mingqiang, ZHANG Haixia, ZHANG Chuanting, et al. Communication-efficient quantized deep compressed sensing for edge-cloud collaborative industrial IoT networks[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 6613–6623. doi: 10.1109/TII.2022.3202203.
    [20]
    徐文伟, 张弓, 白铂, 等. 后香农时代ICT领域的十大挑战问题[J]. 中国科学: 数学, 2021, 51(7): 1095–1138. doi: 10.1360/SSM-2021-0013.

    XU Wenwei, ZHANG Gong, BAI Bo, et al. Ten key ICT challenges in the post-Shannon era[J]. Scientia Sinica Mathematica, 2021, 51(7): 1095–1138. doi: 10.1360/SSM-2021-0013.
    [21]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
    [22]
    HAUPT J, BAJWA W U, RABBAT M, et al. Compressed sensing for networked data[J]. IEEE Signal Processing Magazine, 2008, 25(2): 92–101. doi: 10.1109/MSP.2007.914732.
    [23]
    XIANG Liu, LUO Jun, and ROSENBERG C. Compressed data aggregation: Energy-efficient and high-fidelity data collection[J]. IEEE/ACM Transactions on Networking, 2013, 21(6): 1722–1735. doi: 10.1109/TNET.2012.2229716.
    [24]
    GREGOR K and LECUN Y. Learning fast approximations of sparse coding[C]. Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 2010: 399–406.
    [25]
    MOUSAVI A, PATEL A B, and BARANIUK R G. A deep learning approach to structured signal recovery[C]. 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2015: 1336–1343. doi: 10.1109/ALLERTON.2015.7447163.
    [26]
    BORA A, JALAL A, PRICE E, et al. Compressed sensing using generative models[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 537–546.
    [27]
    WU Yan, ROSCA M, and LILLICRAP T. Deep compressed sensing[C]. Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6850–6860.
    [28]
    CHEN Wei, ZHANG Bowen, JIN Shi, et al. Solving sparse linear inverse problems in communication systems: A deep learning approach with adaptive depth[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 4–17. doi: 10.1109/JSAC.2020.3036959.
    [29]
    ZHANG Jian and GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1828–1837. doi: 10.1109/CVPR.2018.00196.
    [30]
    CHEN Bin and ZHANG Jian. Content-aware scalable deep compressed sensing[J]. IEEE Transactions on Image Processing, 2022, 31: 5412–5426. doi: 10.1109/TIP.2022.3195319.
    [31]
    MOU Chong and ZHANG Jian. TransCL: Transformer makes strong and flexible compressive learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 5236–5251. doi: 10.1109/TPAMI.2022.3194001.
    [32]
    SONG Jiechong CHEN Bin, and ZHANG Jian. Dynamic path-controllable deep unfolding network for compressive sensing[J]. IEEE Transactions on Image Processing, 2023, 32: 2202–2214. doi: 10.1109/TIP.2023.3263100.
    [33]
    CHEN Bin, ZHANG Zhenyu, LI Weiqi, et al. Invertible diffusion models for compressed sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(5): 3992–4006. doi: 10.1109/TPAMI.2025.3538896.
    [34]
    ANTUN V, RENNA F, POON C, et al. On instabilities of deep learning in image reconstruction and the potential costs of AI[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30088–30095. doi: 10.1073/PNAS.1907377117.
    [35]
    PAPYAN V, HAN X Y, and DONOHO D L. Prevalence of neural collapse during the terminal phase of deep learning training[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(40): 24652–24663. doi: 10.1073/PNAS.2015509117.
    [36]
    TISHBY N and ZASLAVSKY N. Deep learning and the information bottleneck principle[C]. 2015 IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 2015: 1–5. doi: 10.1109/ITW.2015.7133169.
    [37]
    SHWARTZ-ZIV R and TISHBY N. Opening the black box of deep neural networks via information[J]. arXiv preprint arXiv: 1703.00810, 2017. doi: 10.48550/arXiv.1703.00810. (查阅网上资料,请确认本条文献文献类型及格式是否正确).
    [38]
    LEE B, KO K, HONG J, et al. Information bottleneck measurement for compressed sensing image reconstruction[J]. IEEE Signal Processing Letters, 2022, 29: 1943–1947. doi: 10.1109/LSP.2022.3205275.
    [39]
    CHAN K H R, YU Yaodong, YOU Chong, et al. ReduNet: A white-box deep network from the principle of maximizing rate reduction[J]. The Journal of Machine Learning Research, 2022, 23(1): 4907–5009.
    [40]
    WRIGHT J and MA Yi. High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications[M]. Cambridge: Cambridge University Press, 2022.
    [41]
    YU Yaodong, BUCHANAN S, PAI D, et al. White-box transformers via sparse rate reduction: Compression is all there is?[J]. The Journal of Machine Learning Research, 2024, 25(1): 14426–14553.
    [42]
    RAISSI M, PERDIKARIS P, and KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686–707. doi: 10.1016/J.JCP.2018.10.045.
    [43]
    KARNIADAKIS G E, KEVREKIDIS I G, LU Lu, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422–440. doi: 10.1038/s42254-021-00314-5.
    [44]
    CHEN Zhao, LIU Yang, and SUN Hao. Physics-informed learning of governing equations from scarce data[J]. Nature Communications, 2021, 12(1): 6136. doi: 10.1038/s41467-021-26434-1.
    [45]
    KONTOGIANNIS A and JUNIPER M P. Physics-informed compressed sensing for PC-MRI: An inverse Navier-Stokes problem[J]. IEEE Transactions on Image Processing, 2023, 32: 281–294. doi: 10.1109/TIP.2022.3228172.
    [46]
    SHEN Sheng, LU Hao, SADOUGHI M, et al. A physics-informed deep learning approach for bearing fault detection[J]. Engineering Applications of Artificial Intelligence, 2021, 103: 104295. doi: 10.1016/J.ENGAPPAI.2021.104295.
    [47]
    WANG Fujin, ZHAI Zhi, ZHAO Zhibin, et al. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis[J]. Nature Communications, 2024, 15(1): 4332. doi: 10.1038/s41467-024-48779-z.
    [48]
    LIAO Wangang, LONG Xiangyun, and JIANG Chao. A physics-informed neural network method for identifying parameters and predicting remaining life of fatigue crack growth[J]. International Journal of Fatigue, 2025, 191: 108678. doi: 10.1016/J.IJFATIGUE.2024.108678.
    [49]
    BRUCKNER D, STĂNICĂ M P, BLAIR R, et al. An introduction to OPC UA TSN for industrial communication systems[J]. Proceedings of the IEEE, 2019, 107(6): 1121–1131. doi: 10.1109/JPROC.2018.2888703.
    [50]
    LI Xiaobin, ZHANG Shucheng, JIANG Pei, et al. Knowledge graph based OPC UA information model automatic construction method for heterogeneous devices integration[J]. Robotics and Computer-Integrated Manufacturing, 2024, 88: 102736. doi: 10.1016/j.rcim.2024.102736.
    [51]
    BAO Jie, BASU P, DEAN M, et al. Towards a theory of semantic communication[C]. 2011 IEEE Network Science Workshop, West Point, USA, 2011: 110–117. doi: 10.1109/NSW.2011.6004632.
    [52]
    XIE Huiqiang, QIN Zhijin, LI G Y, et al. Deep learning enabled semantic communication systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 2663–2675. doi: 10.1109/TSP.2021.3071210.
    [53]
    LUO Xuewen, CHEN H H, and GUO Qing. Semantic communications: Overview, open issues, and future research directions[J]. IEEE Wireless Communications, 2022, 29(1): 210–219. doi: 10.1109/MWC.101.2100269.
    [54]
    IMT-2030(6G)推进组. 语义通信技术研究报告&语义通信及语义认知网络架构研究[R]. 2023. (查阅网上资料, 未找到本条文献信息, 请确认并请补充对应的英文信息).
    [55]
    CHACCOUR C, SAAD W, DEBBAH M, et al. Less data, more knowledge: Building next generation semantic communication networks[J]. IEEE Communications Surveys & Tutorials, 2025, 27(1): 37–76. doi: 10.1109/COMST.2024.3412852.
    [56]
    GETU T M, KADDOUM G, and BENNIS M. Semantic communication: A survey on research landscape, challenges, and future directions[J]. Proceedings of the IEEE, 2024, 112(11): 1649–1685. doi: 10.1109/JPROC.2024.3520707.
    [57]
    鹏城实验室, 北京邮电大学, 香港中文大学(深圳). 面向现代语义通信的语义知识库技术白皮书[R]. 2023. (查阅网上资料, 请补充报告编号及对应的英文信息).
    [58]
    牛凯, 鲁延鹏, 董超. 面向工业互联网的语义编码传输方法及应用[J]. 中山大学学报: 自然科学版中英文, 2025, 64(1): 51–60. doi: 10.13471/j.cnki.acta.snus.ZR20240204.

    NIU Kai, LU Yanpeng, and DONG Chao. Semantic coding transmission method and application for industrial internet[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2025, 64(1): 51–60. doi: 10.13471/j.cnki.acta.snus.ZR20240204.
    [59]
    LU Yuqian and ASGHAR M R. Semantic communications between distributed cyber-physical systems towards collaborative automation for smart manufacturing[J]. Journal of Manufacturing Systems, 2020, 55: 348–359. doi: 10.1016/J.JMSY.2020.05.001.
    [60]
    ZHANG Mingqiang, YANG Yajuan, SONG Baokun, et al. Industrial semantic communications for tool wear monitoring in industrial IoT networks[C]. 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Hangzhou, China, 2024: 248–253. doi: 10.1109/ICCCWorkshops62562.2024.10693780.
    [61]
    BOURTSOULATZE E, KURKA D B, and GÜNDÜZ D. Deep joint source-channel coding for wireless image transmission[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3): 567–579. doi: 10.1109/TCCN.2019.2919300.
    [62]
    KURKA D B and GÜNDÜZ D. DeepJSCC-f: Deep joint source-channel coding of images with feedback[J]. IEEE Journal on Selected Areas in Information Theory, 2020, 1(1): 178–193. doi: 10.1109/JSAIT.2020.2987203.
    [63]
    ERDEMIR E, TUNG T Y, DRAGOTTI P L, et al. Generative joint source-channel coding for semantic image transmission[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2645–2657. doi: 10.1109/JSAC.2023.3288243.
    [64]
    ZHANG Wenyu, ZHANG Haijun, MA Hui, et al. Predictive and adaptive deep coding for wireless image transmission in semantic communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5486–5501. doi: 10.1109/TWC.2023.3234408.
    [65]
    YANG Ke, WANG Sixian, DAI Jincheng, et al. SwinJSCC: Taming swin transformer for deep joint source-channel coding[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 90–104. doi: 10.1109/TCCN.2024.3424842.
    [66]
    HUANG Jianhao, YUAN Kai, HUANG Chuan, et al. D2-JSCC: Digital deep joint source-channel coding for semantic communications[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(4): 1246–1261. doi: 10.1109/JSAC.2025.3531546.
    [67]
    孙亚萍, 崔曙光, 张平. 面向语义通信的语义知识库综述[J]. 中兴通讯技术, 2023, 29(2): 19–23. doi: 10.12142/ZTETJ.202302005.

    SUN Yaping, CUI Shuguang, and ZHANG Ping. Survey on semantic knowledge base for semantic communications[J]. ZTE Technology Journal, 2023, 29(2): 19–23. doi: 10.12142/ZTETJ.202302005.
    [68]
    CHI Yuanfang, DONG Yanjie, WANG Z J, et al. Knowledge-based fault diagnosis in Industrial Internet of Things: A survey[J]. IEEE Internet of Things Journal, 2022, 9(15): 12886–12900. doi: 10.1109/JIOT.2022.3163606.
    [69]
    ZHU Xiangru, LI Zhixu, WANG Xiaodan, et al. Multi-modal knowledge graph construction and application: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2): 715–735. doi: 10.1109/TKDE.2022.3224228.
    [70]
    ZHOU Bin, SHEN Xingwang, LU Yuqian, et al. Semantic-aware event link reasoning over industrial knowledge graph embedding time series data[J]. International Journal of Production Research, 2023, 61(12): 4117–4134. doi: 10.1080/00207543.2021.2022803.
    [71]
    LI Baoxue and ZHAO Chunhui. Federated zero-shot industrial fault diagnosis with cloud-shared semantic knowledge base[J]. IEEE Internet of Things Journal, 2023, 10(13): 11619–11630. doi: 10.1109/JIOT.2023.3243401.
    [72]
    SUN Yaping, CHEN Hao, XU Xiaodong, et al. Semantic knowledge base-enabled zero-shot multi-level feature transmission optimization[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 4904–4917. doi: 10.1109/TWC.2023.3323380.
    [73]
    REN Jinke, ZHANG Zezhong, XU Jie, et al. Knowledge base enabled semantic communication: A generative perspective[J]. IEEE Wireless Communications, 2024, 31(4): 14–22. doi: 10.1109/MWC.001.2300553.
    [74]
    HU Qiyu, ZHANG Guangyi, QIN Zhijin, et al. Robust semantic communications with masked VQ-VAE enabled codebook[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8707–8722. doi: 10.1109/TWC.2023.3265201.
    [75]
    XIE Huiqiang, QIN Zhijin, and LI G Y. Semantic communication with memory[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2658–2669. doi: 10.1109/JSAC.2023.3288236.
    [76]
    PENG Xiang, QIN Zhijjin, TAO Xiaoming, et al. A robust semantic text communication system[J]. IEEE Transactions on Wireless Communications, 2024, 23(9): 11372–11385. doi: 10.1109/TWC.2024.3381950.
    [77]
    PENG Xiang, QIN Zhijjin, TAO Xiaoming, et al. A robust image semantic communication system with multi-scale vision transformer[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(4): 1278–1291. doi: 10.1109/JSAC.2025.3531413.
    [78]
    ZHOU Kequan, ZHANG Guangyi, CAI Yunlong, et al. ROME: Robust model ensembling for semantic communication against semantic jamming attacks[J]. arXiv preprint arXiv: 2501.01172, 2025. doi: 10.48550/arXiv.2501.01172. (查阅网上资料,请确认本条文献文献类型及格式是否正确).
    [79]
    WENG Zhenzi, QIN Zhijin, and LI G Y. Robust semantic communications for speech transmission[C]. ICASSP 2025–2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 2025: 1–5. doi: 10.1109/ICASSP49660.2025.10889160.
    [80]
    PARK T, HONG E, JEON Y S, et al. Robust deep joint source channel coding for task-oriented semantic communications[J]. arXiv preprint arXiv: 2503.12907, 2025. doi: 10.48550/arXiv.2503.12907. (查阅网上资料,请确认本条文献文献类型及格式是否正确).
    [81]
    PEI Jianhua, FENG Cheng, WANG Ping, et al. Latent diffusion model-enabled low-latency semantic communication in the presence of semantic ambiguities and wireless channel noises[J]. IEEE Transactions on Wireless Communications, 2025, 24(5): 4055–4072. doi: 10.1109/TWC.2025.3535714.
    [82]
    JI Zhiduo, CHEN Cailian, HE Jianping, et al. Edge sensing and control co-design for industrial cyber-physical systems: Observability guaranteed method[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13350–13362. doi: 10.1109/TCYB.2021.3079149.
    [83]
    HUANG Jiwei, GAO Han, WAN Shaohua, et al. AoI-aware energy control and computation offloading for industrial IoT[J]. Future Generation Computer Systems, 2023, 139: 29–37. doi: 10.1016/J.FUTURE.2022.09.007.
    [84]
    QIAO Yyue, FU Yusun, and YUAN Muyun. Communication–control co-design in wireless networks: A cloud control AGV example[J]. IEEE Internet of Things Journal, 2023, 10(3): 2346–2359. doi: 10.1109/JIOT.2022.3211766.
    [85]
    CHANG Bo, TANG Wei, YAN Xiaoyu, et al. Integrated scheduling of sensing, communication, and control for mmWave/THz communications in cellular connected UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2103–2113. doi: 10.1109/JSAC.2022.3157366.
    [86]
    WANG Zijie, LIU Rongke, LIU Qirui, et al. QoS-oriented sensing–communication–control co-design for UAV-enabled positioning[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 497–511. doi: 10.1109/TGCN.2023.3234139.
    [87]
    GUAN Xinping. Network system capacity: Towards integrating sensing, communication and control[J]. National Science Open, 2024, 3(1): 20230036. doi: 10.1360/nso/20230036.
    [88]
    DIAO Yufeng, ZHANG Yichi, DE MARTINI D, et al. Task-oriented co-design of communication, computing, and control for edge-enabled industrial Cyber-Physical Systems[J]. arXiv preprint arXiv: 2503.08661, 2025. doi: 10.48550/arXiv.2503.08661.(查阅网上资料,请确认本条文献文献类型及格式是否正确).
    [89]
    LU Binbin, HUANG Xumin, WU Yuan, et al. Joint optimization of compression, transmission and computation for cooperative perception aided intelligent vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2025, 74(5): 8201–8214. doi: 10.1109/TVT.2025.3528026.
    [90]
    LU Jingwei, WANG Xingxia, CHENG Xiang, et al. Parallel factories for smart industrial operations: From big AI models to field foundational models and scenarios engineering[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2079–2086. doi: 10.1109/JAS.2022.106094.
    [91]
    REN Lei, WANG Haiteng, DONG Jiabao, et al. Industrial foundation model[J]. IEEE Transactions on Cybernetics, 2025, 55(5): 2286–2301. doi: 10.1109/TCYB.2025.3527632.
    [92]
    GUO Shaolong, WANG Yuntao, ZHANG Ning, et al. A survey on semantic communication networks: Architecture, security, and privacy[J]. IEEE Communications Surveys & Tutorials, 2024: 1–1. doi: 10.1109/COMST.2024.3516819. (查阅网上资料,未找到年卷期页码信息,请补充).
    [93]
    YANG Kun, XU Zhi, YANG Dingkang, et al. Robust multi-agent collaborative perception via spatio-temporal awareness[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(6): 5644–5658. doi: 10.1109/TCSVT.2025.3528980.
    [94]
    LENG Jiewu, SHA Weinan, WANG Baicun, et al. Industry 5.0: Prospect and retrospect[J]. Journal of Manufacturing Systems, 2022, 65: 279–295. doi: 10.1016/j.jmsy.2022.09.017.
    [95]
    KATSAMPIRIS-SALGADO K, DIMITROPOULOS N, GKRIZIS C, et al. Advancing human-robot collaboration: Predicting operator trajectories through AI and infrared imaging[J]. Journal of Manufacturing Systems, 2024, 74: 980–994. doi: 10.1016/J.JMSY.2024.05.015.
    [96]
    YU Weigang, LV Jianhao, ZHUANG Weibin, et al. Rescheduling human-robot collaboration tasks under dynamic disassembly scenarios: An MLLM-KG collaboratively enabled approach[J]. Journal of Manufacturing Systems, 2025, 80: 20–37. doi: 10.1016/J.JMSY.2025.02.015.
    [97]
    WANG Shenglin, ZHANG Jingqiong, WANG Peng, et al. A deep learning-enhanced Digital Twin framework for improving safety and reliability in human–robot collaborative manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2024, 85: 102608. doi: 10.1016/J.RCIM.2023.102608.
    [98]
    ZHENG Chen, DU Yuyang, XIAO Jinhua, et al. Semantic map construction approach for human-robot collaborative manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2025, 91: 102845. doi: 10.1016/J.RCIM.2024.102845.
    [99]
    PENG Liwen, JIAN Songlei, LI Minne, et al. A unified multimodal classification framework based on deep metric learning[J]. Neural Networks, 2025, 181: 106747. doi: 10.1016/J.NEUNET.2024.106747.
    [100]
    WANG Ye, CHEN Lixing, BAI Yang, et al. Through diverse lenses: Multi-modal collaborative perception for indoor scenes in smart home systems[J]. IEEE Internet of Things Journal, 2025, 12(11): 15697–15709. doi: 10.1109/JIOT.2025.3533046.
    [101]
    LI Baojiang, LI Liang, WANG Haiyan, et al. TVT-Transformer: A Tactile-visual-textual fusion network for object recognition[J]. Information Fusion, 2025, 118: 102943. doi: 10.1016/J.INFFUS.2025.102943.
    [102]
    TAO Fei, ZHANG He, and ZHENG Chenyuan. Advancements and challenges of digital twins in industry[J]. Nature Computational Science, 2024, 4(3): 169–177. doi: 10.1038/s43588-024-00603-w.
    [103]
    BARATA J and KAYSER I. How will the digital twin shape the future of industry 5.0?[J]. Technovation, 2024, 134: 103025. doi: 10.1016/J.TECHNOVATION.2024.103025.
    [104]
    XU Hansong, WU Jun, PAN Qianqian, et al. A survey on digital twin for Industrial Internet of Things: Applications, technologies and tools[J]. IEEE Communications Surveys & Tutorials, 2023, 25(4): 2569–2598. doi: 10.1109/COMST.2023.3297395.
    [105]
    陶飞, 张辰源, 戚庆林, 等. 数字孪生成熟度模型[J]. 计算机集成制造系统, 2022, 28(5): 1267–1281. doi: 10.13196/J.CIMS.2022.05.001.

    TAO Fei, ZHANG Chenyuan, QI Qinglin, et al. Digital twin maturity model[J]. Computer Integrated Manufacturing Systems, 2022, 28(5): 1267–1281. doi: 10.13196/J.CIMS.2022.05.001.
    [106]
    WANG Baicun, ZHOU Huiying, LI Xingyu, et al. Human digital twin in the context of Industry 5.0[J]. Robotics and Computer-Integrated Manufacturing, 2024, 85: 102626. doi: 10.1016/J.RCIM.2023.102626.
    [107]
    SUN Jiacheng, WANG Dong, LIU Zhenyu, et al. Tool digital twin based on knowledge embedding for precision CNC machine tools: Wear prediction for collaborative multi-tool[J]. Journal of Manufacturing Systems, 2025, 80: 157–175. doi: 10.1016/J.JMSY.2025.02.021.
    [108]
    LI Tong, LONG Qingyue, CHAI Haoye, et al. Generative AI empowered network digital twins: Architecture, technologies, and applications[J]. ACM Computing Surveys, 2025, 57(6): 157. doi: 10.1145/3711682.
    [109]
    LI Bin, CAI Haichen, LIU Lei, et al. Delay-Aware digital twin synchronization in mobile edge networks with semantic communications[J]. IEEE Transactions on Vehicular Technology, 2025, 74(7): 10974–10983. doi: 10.1109/TVT.2025.3548844.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (130) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return