Citation: | QIAO Chengping, JIN Jiakun, ZHANG Junchao, ZHU Zhengliang, CAO Xiangxu. Low-Light Object Detection via Joint Image Enhancement and Feature Adaptation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250302 |
[1] |
WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[C]. Proceedings of British Machine Vision Conference, Newcastle, UK, 2018: 155.
|
[2] |
GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 1777–1786. doi: 10.1109/CVPR42600.2020.00185.
|
[3] |
LUO Yu, CHEN Xuanrong, LING Jie, et al. Unsupervised low-light image enhancement with self-paced learning[J]. IEEE Transactions on Multimedia, 2025, 27: 1808–1820. doi: 10.1109/TMM.2024.3521752.
|
[4] |
WANG Qiang, CUI Yuning, LI Yawen, et al. RFFNet: Towards robust and flexible fusion for low-light image denoising[C]. Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, Australia, 2024: 836–845. doi: 10.1145/3664647.3680675.
|
[5] |
WANG Ruixing, ZHANG Qing, FU C W, et al. Underexposed photo enhancement using deep illumination estimation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6842–6850. doi: 10.1109/CVPR.2019.00701.
|
[6] |
JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v5.0-YOLOv5-P6 1280 models, AWS, supervise. ly and YouTube integrations[EB/OL]. https://zenodo.org/records/4679653, 2021.
|
[7] |
QIN Qingpao, CHANG Kan, HUANG Mengyuan, et al. DENet: Detection-driven enhancement network for object detection under adverse weather conditions[C]. Proceedings of the 16th Asian Conference on Computer Vision, Macao, China, 2022: 491–507. doi: 10.1007/978-3-031-26313-2_30.
|
[8] |
YIN Xiangchen, YU Zhenda, FEI Zetao, et al. PE-YOLO: Pyramid enhancement network for dark object detection[C]. Proceedings of the 32nd International Conference on Artificial Neural Networks on Artificial Neural Networks and Machine Learning, Heraklion, Crete, Greece, 2023: 163–174. doi: 10.1007/978-3-031-44195-0_14.
|
[9] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018. doi: 10.48550/arXiv.1804.02767 (查阅网上资料,不确定文献类型及格式是否正确,请确认).
|
[10] |
LIU Wenyu, REN Gaofeng, YU Runsheng, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]. Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022: 1792–1800. doi: 10.1609/aaai.v36i2.20072.(查阅网上资料,未找到本条文献出版地信息,请确认).
|
[11] |
JIA Xinyu, ZHU Chuang, LI Minzhen, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 3489–3497. doi: 10.1109/ICCVW54120.2021.00389.
|
[12] |
FENG Bin, XIAO Jinpei, ZHANG Junchao, et al. Color-polarization synergistic target detection method considering shadow interference[J]. Defence Technology, 2024, 37: 50–61. doi: 10.1016/j.dt.2024.01.007.
|
[13] |
WANG Shuhang and LUO Gang. Naturalness preserved image enhancement using a priori multi-layer lightness statistics[J]. IEEE Transactions on Image Processing, 2018, 27(2): 938–948. doi: 10.1109/TIP.2017.2771449.
|
[14] |
LOH Y P and CHAN C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30–42. doi: 10.1016/j.cviu.2018.10.010.
|
[15] |
HASHMI K A, KALLEMPUDI G, STRICKER D, et al. FeatEnHancer: Enhancing hierarchical features for object detection and beyond under low-light vision[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 6702–6712. doi: 10.1109/ICCV51070.2023.00619.
|
[16] |
CUI Ziteng, QI Guojun, GU Lin, et al. Multitask AET with orthogonal tangent regularity for dark object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 2533–2542. doi: 10.1109/ICCV48922.2021.00255.
|
[17] |
DU Zhipeng, SHI Miaojing, and DENG Jiankang. Boosting object detection with zero-shot day-night domain adaptation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 12666–12676. doi: 10.1109/CVPR52733.2024.01204.
|
[18] |
ZHANG Qing, NIE Yongwei, and ZHENG Weishi. Dual illumination estimation for robust exposure correction[J]. Computer Graphics Forum, 2019, 38(7): 243–252. doi: 10.1111/cgf.13833.
|
[19] |
GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982–993. doi: 10.1109/TIP.2016.2639450.
|
[20] |
XU Xiaogang, WANG Ruixing, FU C W, et al. SNR-aware low-light image enhancement[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 17693–17703. doi: 10.1109/CVPR52688.2022.01719.
|
[21] |
FU Zhenqi, YANG Yan, TU Xiaotong, et al. Learning a simple low-light image enhancer from paired low-light instances[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 22252–22261. doi: 10.1109/CVPR52729.2023.02131.
|
[22] |
YANG Shuzhou, DING Moxuan, WU Yanmin, et al. Implicit neural representation for cooperative low-light image enhancement[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 12872–12881. doi: 10.1109/ICCV51070.2023.01187.
|
[23] |
YE Dongjie, NI Zhangkai, YANG Wenhan, et al. Glow in the dark: Low-light image enhancement with external memory[J]. IEEE Transactions on Multimedia, 2024, 26: 2148–2163. doi: 10.1109/TMM.2023.3293736.
|
[24] |
GHARBI M, CHEN Jiawen, BARRON J T, et al. Deep bilateral learning for real-time image enhancement[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 118.
|