Citation: | HU Yulin, YU Xinlan, GAO Wei, ZHU Yao. Security and Reliability-Optimal Offloading for Mobile Edge Computing in Low-latency Industrial IoT[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250262 |
[1] |
PELLE I, PAOLUCCI F, SONKOLY B, et al. Latency-sensitive edge/cloud serverless dynamic deployment over telemetry-based packet-optical network[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(9): 2849–2863. doi: 10.1109/JSAC.2021.3064655.
|
[2] |
王新奕, 费泽松, 周一青, 等. 面向物联网的通感算智融合: 关键技术与未来展望[J]. 电子与信息学报, 2025, 47(4): 888–908. doi: 10.11999/JEIT240806.
WANG Xinyi, FEI Zesong, ZHOU Yiqing, et al. Integrated sensing, communication, computation, and intelligence towards IoT: Key technologies and future directions[J]. Journal of Electronics & Information Technology, 2025, 47(4): 888–908. doi: 10.11999/JEIT240806.
|
[3] |
AL-TURJMAN F and ALTURJMAN S. Context-sensitive access in industrial internet of things (IIoT) healthcare applications[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2736–2744. doi: 10.1109/TII.2018.2808190.
|
[4] |
MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201.
|
[5] |
DILLON T, WU Chen, and CHANG E. Cloud computing: Issues and challenges[C]. Proceedings of 2010 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, WA, Australia, 2010: 27–33. doi: 10.1109/AINA.2010.187.
|
[6] |
SUN Gang, WANG Zhiying, SU Hanyu, et al. Profit maximization of independent task offloading in MEC-enabled 5G internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 16449–16461. doi: 10.1109/TITS.2024.3416300.
|
[7] |
ZHONG Liang, LIU Yuyang, DENG Xianjun, et al. Distributed optimization of multi-role UAV functionality switching and trajectory for security task offloading in UAV-assisted MEC[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 19432–19447. doi: 10.1109/TVT.2024.3434354.
|
[8] |
SAUTER T and TREYTL A. IoT-enabled sensors in automation systems and their security challenges[J]. IEEE Sensors Letters, 2023, 7(12): 7500904. doi: 10.1109/LSENS.2023.3332404.
|
[9] |
RANAWEERA P, JURCUT A D, and LIYANAGE M. Survey on multi-access edge computing security and privacy[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1078–1124. doi: 10.1109/COMST.2021.3062546.
|
[10] |
DING Yu, ZHANG Qingqing, LU Weidang, et al. Collaborative communication and computation for secure UAV-enabled MEC against active aerial eavesdropping[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 15915–15929. doi: 10.1109/TWC.2024.3435017.
|
[11] |
MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318.
|
[12] |
SHE Changyang, PAN Cunhua, DUONG T Q, et al. Guest editorial xURLLC in 6G: Next generation ultra-reliable and low-latency communications[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(7): 1963–1968. doi: 10.1109/JSAC.2023.3282543.
|
[13] |
FENG Chen, WANG Huiming, and POOR H V. Reliable and secure short-packet communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 1913–1926. doi: 10.1109/TWC.2021.3108042.
|
[14] |
WANG Huiming, YANG Qian, DING Zhiguo, et al. Secure short-packet communications for mission-critical IoT applications[J]. IEEE Transactions on Wireless Communications, 2019, 18(5): 2565–2578. doi: 10.1109/TWC.2019.2904968.
|
[15] |
KOSTINA V and VERDU S. Fixed-length lossy compression in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2012, 58(6): 3309–3338. doi: 10.1109/TIT.2012.2186786.
|
[16] |
KOSTINA V and VERDÚ S. Lossy joint source-channel coding in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2013, 59(5): 2545–2575. doi: 10.1109/TIT.2013.2238657.
|
[17] |
CAO M X, RAMAKRISHNAN N, BERTA M, et al. Channel simulation: Finite blocklengths and broadcast channels[J]. IEEE Transactions on Information Theory, 2024, 70(10): 6780–6808. doi: 10.1109/TIT.2024.3445998.
|
[18] |
POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
|
[19] |
HU Yulin, ZHU Yao, GURSOY M C, et al. SWIPT-enabled relaying in IoT networks operating with finite blocklength codes[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 74–88. doi: 10.1109/JSAC.2018.2872361.
|
[20] |
ZHU Yao, HU Yulin, SCHMEINK A, et al. Energy minimization of mobile edge computing networks with HARQ in the finite blocklength regime[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7105–7120. doi: 10.1109/TWC.2022.3154670.
|
[21] |
YANG Helin, XIONG Zehui, ZHAO Jun, et al. Deep reinforcement learning based massive access management for ultra-reliable low-latency communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 2977–2990. doi: 10.1109/TWC.2020.3046262.
|
[22] |
YU Xinlan, ZHU Yao, HU Yulin, et al. Blocklength allocation for security-enhanced MEC with dependency-aware tasks[C]. Proceedings of 2023 International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2023: 761–766. doi: 10.1109/WCSP58612.2023.10404666.
|
[23] |
BENNIS M, DEBBAH M, and POOR H V. Ultrareliable and low-latency wireless communication: Tail, risk, and scale[J]. Proceedings of the IEEE, 2018, 106(10): 1834–1853. doi: 10.1109/JPROC.2018.2867029.
|
[24] |
SAMARAKOON S, BENNIS M, SAAD W, et al. Distributed federated learning for ultra-reliable low-latency vehicular communications[J]. IEEE Transactions on Communications, 2020, 68(2): 1146–1159. doi: 10.1109/TCOMM.2019.2956472.
|
[25] |
LIU Chenfeng, BENNIS M, DEBBAH M, et al. Dynamic task offloading and resource allocation for ultra-reliable low-latency edge computing[J]. IEEE Transactions on Communications, 2019, 67(6): 4132–4150. doi: 10.1109/TCOMM.2019.2898573.
|
[26] |
MAO Bomin, LIU Jiajia, WU Yingying, et al. Security and privacy on 6G network edge: A survey[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 1095–1127. doi: 10.1109/COMST.2023.3244674.
|
[27] |
ILLI E, QARAQE M, ALTHUNIBAT S, et al. Physical layer security for authentication, confidentiality, and malicious node detection: A paradigm shift in securing IoT networks[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 347–388. doi: 10.1109/COMST.2023.3327327.
|
[28] |
SOLAIJA M S J, SALMAN H, and ARSLAN H. Towards a unified framework for physical layer security in 5G and beyond networks[J]. IEEE Open Journal of Vehicular Technology, 2022, 3: 321–343. doi: 10.1109/OJVT.2022.3183218.
|
[29] |
HE Xiaofan, JIN Richeng, and DAI Huaiyu. Physical-layer assisted secure offloading in mobile-edge computing[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 4054–4066. doi: 10.1109/TWC.2020.2979456.
|
[30] |
BAI Tong, WANG Jingjing, REN Yong, et al. Energy-efficient computation offloading for secure UAV-edge-computing systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 6074–6087. doi: 10.1109/TVT.2019.2912227.
|
[31] |
XU Jie and YAO Jianping. Exploiting physical-layer security for multiuser multicarrier computation offloading[J]. IEEE Wireless Communications Letters, 2019, 8(1): 9–12. doi: 10.1109/LWC.2018.2845882.
|
[32] |
ZHU Yao, YUAN Xiaopeng, HU Yulin, et al. Trade reliability for security: Leakage-failure probability minimization for machine-type communications in URLLC[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(7): 2123–2137. doi: 10.1109/JSAC.2023.3280960.
|
[33] |
ZHU Yao, HU Yulin, YANG Tianyu, et al. Reliability-optimal offloading in low-latency edge computing networks: Analytical and reinforcement learning based designs[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6058–6072. doi: 10.1109/TVT.2021.3073791.
|
[34] |
ZHAO Xiaoyu, CHEN Wei, and POOR H V. Achieving extremely low-latency in industrial internet of things: Joint finite blocklength coding, resource block matching, and performance analysis[J]. IEEE Transactions on Communications, 2021, 69(10): 6529–6544. doi: 10.1109/TCOMM.2021.3097727.
|
[35] |
SHI Chenhao, HU Yulin, ZHU Yao, et al. Security-aware energy-efficient design for mobile edge computing network operating with finite blocklength codes[J]. EURASIP Journal on Wireless Communications and Networking, 2024, 2024(1): 67. doi: 10.1186/s13638-024-02395-z.
|