Citation: | ZHANG Zhilin, MAO Zhongyang, LU Faping, PAN Yaozong, LIU Xiguo, KANG Jiafang, YOU Yang, JIN Yin. Cross-Layer Collaborative Resource Allocation in Maritime Wireless Communications: QoS-Aware Power Control and Knowledge-Enhanced Service Scheduling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250252 |
[1] |
NOMIKOS N, GKONIS P K, BITHAS P S, et al. A survey on UAV-aided maritime communications: Deployment considerations, applications, and future challenges[J]. IEEE Open Journal of the Communications Society, 2023, 4: 56–78. doi: 10.1109/OJCOMS.2022.3225590.
|
[2] |
SONG Y, SHIN H, KOO S, et al. Internet of maritime things platform for remote marine water quality monitoring[J]. IEEE Internet of Things Journal, 2022, 9(16): 14355–14365. doi: 10.1109/JIOT.2021.3079931.
|
[3] |
RANI S, BABBAR H, KAUR P, et al. An optimized approach of dynamic target nodes in wireless sensor network using bio inspired algorithms for maritime rescue[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 2548–2555. doi: 10.1109/TITS.2021.3129914.
|
[4] |
HASSAN S S, KIM D H, TUN Y K, et al. Seamless and energy-efficient maritime coverage in coordinated 6G space–air–sea non-terrestrial networks[J]. IEEE Internet of Things Journal, 2023, 10(6): 4749–4769. doi: 10.1109/JIOT.2022.3220631.
|
[5] |
NOMIKOS N, GIANNOPOULOS A, KALAFATELIS A, et al. Improving connectivity in 6G maritime communication networks with UAV swarms[J]. IEEE Access, 2024, 12: 18739–18751. doi: 10.1109/ACCESS.2024.3360133.
|
[6] |
FANG Xinran, FENG Wei, WANG Yanmin, et al. NOMA-based hybrid satellite-UAV-terrestrial networks for 6G maritime coverage[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 138–152. doi: 10.1109/TWC.2022.3191719.
|
[7] |
JI Tian, CHANG Xiaolei, CHEN Zhengjian, et al. Study on QoS routing optimization algorithms for smart ocean networks[J]. IEEE Access, 2023, 11: 86489–86508. doi: 10.1109/ACCESS.2023.3298438.
|
[8] |
YU Jun, WANG Rui, and Wu Jun. QoS-driven resource optimization for intelligent fog radio access network: A dynamic power allocation perspective[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(1): 394–407. doi: 10.1109/TCCN.2021.3094209.
|
[9] |
WU Yile, GE Le, YUAN Xiangyun, et al. Adaptive power control based on double-layer Q-learning algorithm for multi-parallel power conversion systems in energy storage station[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(6): 1714–1724. doi: 10.35833/MPCE.2020.000909.
|
[10] |
QIN Peng, ZHAO Honghao, FU Yang, et al. Energy-efficient resource allocation for space–air–ground integrated industrial power internet of things network[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 5274–5284. doi: 10.1109/TII.2023.3331127.
|
[11] |
CHAN S, LEE H, KIM S, et al. Intelligent low complexity resource allocation method for integrated satellite-terrestrial systems[J]. IEEE Wireless Communications Letters, 2022, 11(5): 1087–1091. doi: 10.1109/LWC.2022.3157062.
|
[12] |
DAI Pengcheng, WANG He, HOU Huazhou, et al. Joint spectrum and power allocation in wireless network: A two-stage multi-agent reinforcement learning method[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(3): 2364–2374. doi: 10.1109/TETCI.2024.3360305.
|
[13] |
HU Xin, WANG Yin, LIU Zhijun, et al. Dynamic power allocation in high throughput satellite communications: A two-stage advanced heuristic learning approach[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3502–3516. doi: 10.1109/TVT.2022.3218565.
|
[14] |
YANG Pan, XIANG Chenlu, and ZHANG Shunqing. Distributed joint power and bandwidth allocation for multiagent cooperative localization[J]. IEEE Communications Letters, 2022, 26(11): 2601–2605. doi: 10.1109/LCOMM.2022.3195646.
|
[15] |
SUI Xiufeng, JIANG Ziqi, LYU Yifeng, et al. Integrating convex optimization and deep learning for downlink resource allocation in LEO satellites networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(3): 1104–1118. doi: 10.1109/TCCN.2024.3361071.
|
[16] |
DANI M N, SO D K C, TANG Jie, et al. Resource allocation for layered multicast video streaming in NOMA systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11379–11394. doi: 10.1109/TVT.2022.3193122.
|
[17] |
JI Tian, CHANG Xiaolei, CHEN Zhengjian, et al. Study on QoS routing optimization algorithms for smart ocean networks[J]. IEEE Access, 2023, 11: 86489–86508. doi: 10.1109/ACCESS.2023.3298438. (查阅网上资料,本条文献与第7条重复,请确认).
|
[18] |
LIN Yuanmo, XU Zhiyong, LI Jianhua, et al. Resource management for QoS-guaranteed marine data feedback based on space–air–ground–sea network[J]. IEEE Systems Journal, 2024, 18(3): 1741–1752. doi: 10.1109/JSYST.2024.3439343.
|
[19] |
WANG Chenlu, PENG Yuhuai, WU Jingjing, et al. Deterministic scheduling and reliable routing for smart ocean services in maritime internet of things: A cross-layer approach[J]. IEEE Transactions on Services Computing, 2024, 17(6): 3387–3399. doi: 10.1109/TSC.2024.3442471.
|
[20] |
SUN Ming, MEI Erzhuang, WANG Shumei, et al. Joint DDPG and unsupervised learning for channel allocation and power control in centralized wireless cellular networks[J]. IEEE Access, 2023, 11: 42191–42203. doi: 10.1109/ACCESS.2023.3270316.
|
[21] |
HE Yuanzhi, SHENG Biao, YIN Hao, et al. Multi-objective deep reinforcement learning based time-frequency resource allocation for multi-beam satellite communications[J]. China Communications, 2022, 19(1): 77–91. doi: 10.23919/JCC.2022.01.007.
|
[22] |
ZABETIAN N and KHALAJ B H. Hybrid QoE-based joint admission control and power allocation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 522–531. doi: 10.1109/TVT.2023.3300775.
|
[23] |
QIN Peng, FU Yang, ZHAO Xiongwen, et al. Optimal task offloading and resource allocation for C-NOMA heterogeneous air-ground integrated power internet of things networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9276–9292. doi: 10.1109/TWC.2022.3175472.
|
[24] |
XUE Tong, ZHANG Haixia, DING Hui, et al. Joint vehicle pairing, spectrum assignment, and power control for sum-rate maximization in NOMA-based V2X underlaid cellular networks[J]. IEEE Internet of Things Journal, 2025, 12(12): 22337–22349. doi: 10.1109/JIOT.2025.3550884.
|
[25] |
ZHANG Xiaochen, ZHAO Haitao, XIONG Jun, et al. Decentralized routing and radio resource allocation in wireless Ad Hoc networks via graph reinforcement learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(3): 1146–1159. doi: 10.1109/TCCN.2024.3360517.
|
[26] |
WANG Zixin, BENNIS M, and ZHOU Yong. Graph attention-based MADRL for access control and resource allocation in wireless networked control systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 16076–16090. doi: 10.1109/TWC.2024.3436906.
|
[27] |
GIANG L T, TUNG N X, VIET V H, et al. HGNN: A hierarchical graph neural network architecture for joint resource management in dynamic wireless sensor networks[J]. IEEE Sensors Journal, 2024, 24(24): 42352–42364. doi: 10.1109/JSEN.2024.3485058.
|
[28] |
LI Dongyang, DING Hui, ZHANG Haixia, et al. Deep learning-enabled joint edge content caching and power allocation strategy in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 3639–3651. doi: 10.1109/TVT.2023.3325036.
|
[29] |
MATHIS M, SEMKE J, MAHDAVI J, et al. The macroscopic behavior of the TCP congestion avoidance algorithm[J]. ACM SIGCOMM Computer Communication Review, 1997, 27(3): 67–82. doi: 10.1145/263932.264023.
|
[30] |
ITU Radiocommunication Sector. Radio noise: P. 372–13[R]. ITU-R P. 372–13, 2016.
|
[31] |
WANG Jue, ZHOU Haifeng, LI Ye, et al. Wireless channel models for maritime communications[J]. IEEE Access, 2018, 6: 68070–68088. doi: 10.1109/ACCESS.2018.2879902.
|
[32] |
ITU Radiocommunication Sector. End-user multimedia QoS categories[R]. G. 1010, 2001.
|
[33] |
XIA Tingting, WANG M M, ZHANG Jingjing, et al. Maritime internet of things: Challenges and solutions[J]. IEEE Wireless Communications, 2020, 27(2): 188–196. doi: 10.1109/MWC.001.1900322.
|
[34] |
XU Jiajie, KISHK M A, and ALOUINI M S. Space-air-ground-sea integrated networks: Modeling and coverage analysis[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6298–6313. doi: 10.1109/TWC.2023.3241341.
|
[35] |
BEKKADAL F. Innovative maritime communications technologies[C]. 18-th International Conference on Microwaves, Radar and Wireless Communications, Vilnius, Lithuania, 2010: 1–4.
|
[36] |
MAO Zhongyang, ZHANG Zhilin, LU Faping, et al. Sea-based UAV network resource allocation method based on an attention mechanism[J]. Electronics, 2024, 13(18): 3686. doi: 10.3390/electronics13183686.
|
[37] |
ALQURASHI F S, TRICHILI A, SAEED N, et al. Maritime communications: A survey on enabling technologies, opportunities, and challenges[J]. IEEE Internet of Things Journal, 2023, 10(4): 3525–3547. doi: 10.1109/JIOT.2022.3219674.
|
[38] |
张冬梅, 徐友云, 蔡跃明. OFDMA系统中线性注水功率分配算法[J]. 电子与信息学报, 2007, 29(6): 1286–1289. doi: 10.3724/SP.J.1146.2005.01345.
ZHANG Dongmei, XU Youyun, and CAI Yueming. Linear water-filling power allocation algorithm in OFDMA system[J]. Journal of Electronics & Information Technology, 2007, 29(6): 1286–1289. doi: 10.3724/SP.J.1146.2005.01345.
|
[39] |
陆音, 汪成功, 王慧如, 等. 一种基于遗传算法的NOMA功率分配方法[P]. 中国, 201811038383.6, 2019.
LU Yin, WANG Chenggong, WANG Huiru, et al. NOMA power distribution method based on genetic algorithm[P]. CN, 201811038383.6, 2019. (查阅网上资料, 不确定本条文献年份, 请确认).
|
[40] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing Atari with deep reinforcement learning[C]. Neural Information Processing Systems, Montereal, Canada, 2015: 1–9. doi: 10.48550/arXiv.1312.5602. (查阅网上资料,未找到本条文献信息,请确认).
|
[41] |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[C]. 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016. doi: 10.1016/S1098–3015(10)67722–4. (查阅网上资料,未找到本条文献页码和doi,请确认).
|
[42] |
BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a “Siamese” time delay neural network[C]. Proceedings of the 7th International Conference on Neural Information Processing Systems, Denver, USA, 1993: 737–744. doi: 10.5555/2987189.2987282. (查阅网上资料,未找到本条文献doi,请确认).
|