Citation: | TANG Xinmin, TANG Shengjia, WEN Jingyu, GU Junwei. Study on Time Slot Allocation and Monitoring Performance of UAT2 Data Link Status Bitmap[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250251 |
[1] |
FAA. Concept of operations v2.0[R]. Washington DC, USA: FAA, 2023. (查阅网上资料, 未找到本条文献报告编号信息, 请确认).
|
[2] |
李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35–54. doi: 10.19818/j.cnki.1671-1637.2020.04.003.
LI Chenglong, QU Wenqiu, LI Yandong, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35–54. doi: 10.19818/j.cnki.1671-1637.2020.04.003.
|
[3] |
WANG Leilei, DENG Xiaoheng, GUI Jinsong, et al. A review of urban air mobility-enabled intelligent transportation systems: Mechanisms, applications and challenges[J]. Journal of Systems Architecture, 2023, 141: 102902. doi: 10.1016/j.sysarc.2023.102902.
|
[4] |
廖小罕, 屈文秋, 徐晨晨, 等. 城市空中交通及其新型基础设施低空公共航路研究综述[J]. 航空学报, 2023, 44(24): 028521. doi: 10.7527/S1000-6893.2023.28521.
LIAO Xiaohan, QU Wenqiu, XU Chenchen, et al. A review of urban air mobility and its new infrastructure low-altitude public routes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 028521. doi: 10.7527/S1000-6893.2023.28521.
|
[5] |
汤新民, 顾俊伟, 刘冰, 等. 低空监视技术及其发展趋势综述[J]. 南京航空航天大学学报, 2024, 56(6): 973–993. doi: 10.16356/j.1005-2615.2024.06.001.
TANG Xinmin, GU Junwei, LIU Bin, et al. Review on low-altitude surveillance technology and its development trend[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2024, 56(6): 973–993. doi: 10.16356/j.1005-2615.2024.06.001.
|
[6] |
中国民航局. IB-TM-2024-01 民用微轻小型无人驾驶航空器运行识别最低性能要求(试行)[S]. 北京: 中国民航局.
CAAC. IB-TM-2024-01 Civil micro and light small UAS operation identification minimum operational performance standards (provisional)[S]. Beijing: CAAC. (查阅网上资料, 未找到本条文献出版和英文信息, 请确认).
|
[7] |
FAA, Department of Transportation. FAA-2019-1100 Policy statement for the reported geometric altitude of the control station of a standard remote identification unmanned aircraft[S]. Washington: FAA, DOT, 2019.
|
[8] |
NASA. Reliable, secure, and scalable communications, navigation, and surveillance (CNS) options for urban air mobility (UAM)[R]. Cleveland, USA: NASA, 2020. (查阅网上资料, 未找到本条文献报告编号信息, 请确认).
|
[9] |
STOUFFER V L, COTTON W, IRVINE T, et al. Enabling urban air mobility through communications and cooperative surveillance[C]. Proceedings of AIAA Aviation 2021 Forum, Reston, USA, 2021: 2–16. doi: 10.2514/6.2021-3172. (查阅网上资料,未找到本条文献出版地信息,请确认).
|
[10] |
FAA. Unmanned aircraft systems (UAS) traffic management (UTM)[R]. Washington: FAA, 2020. (查阅网上资料, 未找到本条文献报告编号信息, 请确认).
|
[11] |
RTCA. RTCA-DO-282C Minimum operational performance standards (MOPS) for universal access transceiver (UAT) automatic dependent surveillance-broadcast (ADS-B)[S]. Washington: RTCA Inc, 2022.
|
[12] |
孙伟杰. 数据链网络动态时隙分配与优化研究[D]. [硕士论文], 国防科技大学, 2019. doi: 10.27052/d.cnki.gzjgu.2019.000681.
SUN Weijie. Research on dynamic slot allocation and optimization of data link network[D]. [Master dissertation], National University of Defense Technology, 2019. doi: 10.27052/d.cnki.gzjgu.2019.000681.
|
[13] |
LIU Lei, LIU Yiming, WANG Zhaowei, et al. Design of dynamic TDMA protocols for tactical data link[C]. Proceedings of 12th International Conference on Communications and Networking, Xi’an, China, 2017: 166–175. doi: 10.1007/978-3-319-78130-3_18.
|
[14] |
王自强. 低轨卫星数据链动态时隙分配与网络规划研究[D]. [硕士论文], 西安电子科技大学, 2022. doi: 10.27389/d.cnki.gxadu.2022.001624.
WANG Ziqiang. Research on dynamic time slot allocation and network planning for low-orbit satellite data link[D]. [Master dissertation], Xidian University, 2022. doi: 10.27389/d.cnki.gxadu.2022.001624.
|
[15] |
YU Xueyong. 5G wireless networking connection and playback technology assist the low-latency propagation of new media[J]. Journal of Sensors, 2021, 2021(1): 3082280. doi: 10.1155/2021/3082280.
|
[16] |
LEE J S, YOO Y S, CHOI H, et al. Group connectivity-based UAV positioning and data slot allocation for tactical MANET[J]. IEEE Access, 2020, 8: 220570–220584. doi: 10.1109/ACCESS.2020.3042795.
|
[17] |
朱宇挺, 苏焕坤, 冯小东, 等. 基于改进差分算法的数据链时隙分配方法[J]. 系统仿真学报, 2024, 36(5): 1242–1250. doi: 10.16182/j.issn1004731x.joss.23-0095.
ZHU Yuting, SU Huankun, FENG Xiaodong, et al. Time slot allocation method of data link based on improved difference algorithm[J]. Journal of System Simulation, 2024, 36(5): 1242–1250. doi: 10.16182/j.issn1004731x.joss.23-0095.
|
[18] |
苗帅. 基于NS2的UAT数据链仿真设计与实现[D]. [硕士论文], 北京邮电大学, 2012.
MIAO Shuai. The simulation of UAT data link design and implementation[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2012.
|
[19] |
黄裕文, 张炼, 刘元春. UAT数据链上行报文时隙实时动态分配算法研究[J]. 现代雷达, 2017, 39(5): 25–29. doi: 10.16592/j.cnki.1004-7859.2017.05.006.
HUANG Yuwen, ZHANG Lian, and LIU Yuanchun. A study on real time dynamic allocation algorithm for uplink messages of UAT data link[J]. Modern Radar, 2017, 39(5): 25–29. doi: 10.16592/j.cnki.1004-7859.2017.05.006.
|
[20] |
樊昌信, 曹丽娜. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012: 182–241.
FAN Changxin and CAO Lina. Principles of Communications[M]. 7th ed. Beijing: National Defense Industry Press, 2012: 182–241.
|
[21] |
文旌宇, 汤新民, 汤盛家, 等. UAT2数据链监视容量扩充研究[J]. 北京航空航天大学学报, 2024, 1–15. doi: 10.13700/j.bh.1001-5965.2024.0534.
WEN Jingyu, TANG Xinmin, TANG Shengjia, et al. Research on the expansion of surveillance capacity for UAT2 data link[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 1–15. doi: 10.13700/j.bh.1001-5965.2024.0534. (查阅网上资料,未找到本条文献卷期页码信息,请确认).
|