Citation: | LIU Hui, FENG Haoran, MA Jiani, ZHENG Hongdang, ZHANG Lin. Spatial Self-Attention Incorporated Imputation Algorithm for Severely Missing Multivariate Time Series[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250220 |
[1] |
LUO Yonghong, CAI Xiangrui, ZHANG Ying, et al. Multivariate time series imputation with generative adversarial networks[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 1603–1614.
|
[2] |
UCHIHARA M, TANABE A, and KAJIO H. Clinical issues and suggestions: Dashboard visualization of the trajectory of patients with malignant hormone-producing tumors for precision medicine[C]. 2023 Workshop on Visual Analytics in Healthcare (VAHC), Melbourne, Australia, 2023: 47–49. doi: 10.1109/VAHC60858.2023.00015.
|
[3] |
PAL R, ADHIKARI D, HEYAT M B B, et al. Yoga meets intelligent internet of things: Recent challenges and future directions[J]. Bioengineering, 2023, 10(4): 459. doi: 10.3390/bioengineering10040459.
|
[4] |
骆阳, 张旗. 基于模糊关联规则的海量气象数据动态挖掘[J]. 电子设计工程, 2023, 31(22): 149–152. doi: 10.14022/j.issn1674-6236.2023.22.031.
LUO Yang and ZHANG Qi. Dynamic mining of massive meteorological data based on fuzzy association rules[J]. Electronic Design Engineering, 2023, 31(22): 149–152. doi: 10.14022/j.issn1674-6236.2023.22.031.
|
[5] |
WANG Yunsheng, XU Xinghan, HU Lei, et al. A time series continuous missing values imputation method based on generative adversarial networks[J]. Knowledge-Based Systems, 2024, 283: 111215. doi: 10.1016/j.knosys.2023.111215.
|
[6] |
XU Longfei, XU Lingyu, and YU Jie. A multi-task learning-based generative adversarial network for red tide multivariate time series imputation[J]. Complex & Intelligent Systems, 2023, 9(2): 1363–1376. doi: 10.1007/s40747-022-00856-w.
|
[7] |
MIAO Xiaoye, WU Yangyang, CHEN Lu, et al. An experimental survey of missing data imputation algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 6630–6650. doi: 10.1109/TKDE.2022.3186498.
|
[8] |
LIN Weichao, TSAI C F, and ZHONG Jiarong. Deep learning for missing value imputation of continuous data and the effect of data discretization[J]. Knowledge-Based Systems, 2022, 239: 108079. doi: 10.1016/j.knosys.2021.108079.
|
[9] |
郭艳, 宋晓祥, 李宁, 等. 多变量时间序列中基于克罗内克压缩感知的缺失数据预测算法[J]. 电子与信息学报, 2019, 41(4): 858–864. doi: 10.11999/JEIT180541.
GUO Yan, SONG Xiaoxiang, LI Ning, et al. Missing data prediction based on Kronecker compressing sensing in multivariable time series[J]. Journal of Electronics & Information Technology, 2019, 41(4): 858–864. doi: 10.11999/JEIT180541.
|
[10] |
LIU Hui, YU Jian, CHEN Xiangzhi, et al. NeuMF: Predicting anti-cancer drug response through a neural matrix factorization model[J]. Current Bioinformatics, 2022, 17(9): 835–847. doi: 10.2174/1574893617666220609114052.
|
[11] |
朱宇航, 刘树新, 吉立新, 等. 一种融合局部拓扑影响力的时序链路预测算法[J]. 电子与信息学报, 2022, 44(4): 1440–1452. doi: 10.11999/JEIT210019.
ZHU Yuhang, LIU Shuxin, JI Lixin, et al. A temporal link predict algorithm based on fusion local structure influence[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1440–1452. doi: 10.11999/JEIT210019.
|
[12] |
XU Meng, DI Yining, DING Hongxing, et al. AGNP: Network-wide short-term probabilistic traffic speed prediction and imputation[J]. Communications in Transportation Research, 2023, 3: 100099. doi: 10.1016/j.commtr.2023.100099.
|
[13] |
LIU Hui, WANG Feng, YU Jian, et al. DBDNMF: A dual branch deep neural matrix factorization method for drug response prediction[J]. PLoS Computational Biology, 2024, 20(4): e1012012. doi: 10.1371/journal.pcbi.1012012.
|
[14] |
SAMAD M D, ABRAR S, and DIAWARA N. Missing value estimation using clustering and deep learning within multiple imputation framework[J]. Knowledge-Based Systems, 2022, 249: 108968. doi: 10.1016/j.knosys.2022.108968.
|
[15] |
ZHANG Weibin, ZHANG Pulin, YU Yinghao, et al. Missing data repairs for traffic flow with self-attention generative adversarial imputation net[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7919–7930. doi: 10.1109/TITS.2021.3074564.
|
[16] |
THOMAS T and RAJABI E. A systematic review of machine learning-based missing value imputation techniques[J]. Data Technologies and Applications, 2021, 55(4): 558–585. doi: 10.1108/DTA-12-2020-0298.
|
[17] |
XUE Yu, TANG Yihang, XU Xin, et al. Multi-objective feature selection with missing data in classification[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(2): 355–364. doi: 10.1109/TETCI.2021.3074147.
|
[18] |
KIM H, GOLUB G H, and PARK H. Missing value estimation for DNA microarray gene expression data: Local least squares imputation[J]. Bioinformatics, 2005, 21(2): 187–198. doi: 10.1093/bioinformatics/bth499.
|
[19] |
CAMASTRA F, CAPONE V, CIARAMELLA A, et al. Prediction of environmental missing data time series by support vector machine regression and correlation dimension estimation[J]. Environmental Modelling & Software, 2022, 150: 105343. doi: 10.1016/j.envsoft.2022.105343.
|
[20] |
LIN Weichao and TSAI C F. Missing value imputation: A review and analysis of the literature (2006–2017)[J]. Artificial Intelligence Review, 2020, 53(2): 1487–1509. doi: 10.1007/s10462-019-09709-4.
|
[21] |
DABERDAKU S, TAVAZZI E, and DI CAMILLO B. A combined interpolation and weighted K-Nearest Neighbours approach for the imputation of longitudinal ICU laboratory data[J]. Journal of Healthcare Informatics Research, 2020, 4(2): 174–188. doi: 10.1007/s41666-020-00069-1.
|
[22] |
FANG Le, XIANG Wei, ZHOU Yuan, et al. Dual-branch cross-dimensional self-attention-based imputation model for multivariate time series[J]. Knowledge-Based Systems, 2023, 279: 110896. doi: 10.1016/j.knosys.2023.110896.
|
[23] |
QIN Rui and WANG Yong. ImputeGAN: Generative adversarial network for multivariate time series imputation[J]. Entropy, 2023, 25(1): 137. doi: 10.3390/e25010137.
|
[24] |
CHE Zhengping, PURUSHOTHAM S, CHO K, et al. Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 2018, 8(1): 6085. doi: 10.1038/s41598-018-24271-9.
|
[25] |
YOON J, ZAME W R, and VAN DER SCHAAR M. Estimating missing data in temporal data streams using multi-directional recurrent neural networks[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(5): 1477–1490. doi: 10.1109/TBME.2018.2874712.
|
[26] |
CAO Wei, WANG Dong, LI Jian, et al. BRITS: Bidirectional recurrent imputation for time series[C]. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 6776–6786.
|
[27] |
SUO Qiuling, ZHONG Weida, XUN Guangxu, et al. GLIMA: Global and local time series imputation with multi-directional attention learning[C]. 2020 IEEE International Conference on Big Data (Big Data), Atlanta, USA, 2020: 798–807. doi: 10.1109/BigData50022.2020.9378408.
|
[28] |
MA Jiawei, SHOU Zheng, ZAREIAN A, et al. CDSA: Cross-dimensional self-attention for multivariate, geo-tagged time series imputation[EB/OL]. https://arxiv.org/abs/1905.09904, 2019.
|
[29] |
SHAN Siyuan, LI Yang, and OLIVA J B. NRTSI: Non-recurrent time series imputation[C]. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10095054.
|
[30] |
DU Wenjie, CÔTÉ D, and LIU Yan. SAITS: Self-attention-based imputation for time series[J]. Expert Systems with Applications, 2023, 219: 119619. doi: 10.1016/j.eswa.2023.119619.
|
[31] |
CHUI C K, MHASKAR H N, and VAN DER WALT M D. Data-driven atomic decomposition via frequency extraction of intrinsic mode functions[J]. GEM - International Journal on Geomathematics, 2016, 7(1): 117–146. doi: 10.1007/s13137-015-0079-3.
|
[32] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
|
[33] |
PAN Zhuofu, WANG Yalin, WANG Kai, et al. Intel lab data[EB/OL]. https://db.csail.mit.edu/labdata/labdata.html, 2023. (查阅网上资料,未找到本条文献作者,请确认).
|
[34] |
潘立强, 李建中, 骆吉洲. 传感器网络中一种基于时-空相关性的缺失值估计算法[J]. 计算机学报, 2010, 33(1): 1–11. doi: 10.3724/SP.J.1016.2010.00001.
PAN Liqiang, LI Jianzhong, and LUO Jizhou. A temporal and spatial correlation based missing values imputation algorithm in wireless sensor networks[J]. Chinese Journal of Computers, 2010, 33(1): 1–11. doi: 10.3724/SP.J.1016.2010.00001.
|
[35] |
BOX G E P, JENKINS G M, REINSEL G C, et al. Time Series Analysis: Forecasting and Control[M]. 5th ed. Hoboken: Wiley, 2015. (查阅网上资料, 未找到本条文献页码, 请确认).
|
[36] |
ZHANG Shichao. Nearest neighbor selection for iteratively kNN imputation[J]. Journal of Systems and Software, 2012, 85(11): 2541–2552. doi: 10.1016/j.jss.2012.05.073.
|
[37] |
NIE Tong, QIN Guoyang, MA Wei, et al. ImputeFormer: Low rankness-induced transformers for generalizable spatiotemporal imputation[C]. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, 2024: 2260–2271. doi: 10.1145/3637528.3671751.
|