Citation: | MA Yingjie, LIU Yueheng, ZHAO Geng, ZHAO Mingjing, WANG Dan. OTFS Communication Link Construction and Three-Dimensional Constellation Encryption Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250181 |
[1] |
YLI-KAAKINEN J, LOULOU A, LEVANEN T, et al. Frequency-domain signal processing for spectrally-enhanced CP-OFDM waveforms in 5G new radio[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6867–6883. doi: 10.1109/TWC.2021.3077762.
|
[2] |
SIRIWANITPONG A, SANADA K, HATANO H, et al. Deep learning-based channel estimation with 1D CNN for OFDM systems under high-speed railway environments[J]. IEEE Access, 2025, 13: 13128–13142. doi: 10.1109/ACCESS.2025.3531009.
|
[3] |
WANG Xueyang, SHEN Wenqian, XING Chengwen, et al. Joint Bayesian channel estimation and data detection for OTFS systems in LEO satellite communications[J]. IEEE Transactions on Communications, 2022, 70(7): 4386–4399. doi: 10.1109/TCOMM.2022.3179389.
|
[4] |
LI Bei, XIAO Tian, ZHOU Kai, et al. Research on OTFS Systems for 6G[C]. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Wuhan, China, 2022: 1498–1503. doi: 10.1109/TrustCom56396.2022.00213.
|
[5] |
MIAO Qilong, LIANG Jing, ZHANG Ge, et al. A target parameters estimation method for CP-OTFS-based terrestrial radar system[J]. IEEE Wireless Communications Letters, 2025, 14(1): 233–237. doi: 10.1109/LWC.2024.3497959.
|
[6] |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
|
[7] |
SHAFIE A, YUAN Jinhong, FITZPATRICK P, et al. On the coexistence of OTFS modulation with OFDM-based communication systems[J]. IEEE Transactions on Communications, 2024, 72(11): 6822–6838. doi: 10.1109/TCOMM.2024.3412776.
|
[8] |
ALDABABSA M, ÖZYURT S, KURT G K, et al. A survey on orthogonal time frequency space modulation[J]. IEEE Open Journal of the Communications Society, 2024, 5: 4483–4518. doi: 10.1109/OJCOMS.2024.3422801.
|
[9] |
MA Kejia, GAO Zhenzhen, WANG Jinchi, et al. Physical layer security design for FDD IM-OTFS transmissions based on secure mapping[J]. IEEE Access, 2023, 11: 98293–98304. doi: 10.1109/ACCESS.2023.3312580.
|
[10] |
GUO Zhiruo, LIU Bo, REN Jianxin, et al. Doppler delay-time frequency cross-domain joint high security transmission scheme based on orthogonal time frequency space[J]. IEEE Photonics Journal, 2023, 15(5): 7202007. doi: 10.1109/JPHOT.2023.3307548.
|
[11] |
CUI Jie, LIU Bo, REN Jianxin, et al. High-security three-dimensional optical transmission mechanism utilizing time-frequency-space interleaving disruption[J]. Optics Express, 2023, 31(23): 38640–38652. doi: 10.1364/OE.504520.
|
[12] |
赵耿, 马英杰, 董有恒. 混沌密码理论研究与应用新进展[J]. 信息网络安全, 2024, 24(2): 203–216. doi: 10.3969/j.issn.1671-1122.2024.02.004.
ZHAO Geng, MA Yingjie, and DONG Youheng. New progress in research and application of chaotic cryptography theory[J]. Netinfo Security, 2024, 24(2): 203–216. doi: 10.3969/j.issn.1671-1122.2024.02.004.
|
[13] |
TAN Yanhua, TAO Yiwei, FANG Yi, et al. Three-dimensional constellation-assisted DCSK system: A new design for high-rate chaotic communication[J]. IEEE Transactions on Communications, 2024, 72(6): 3199–3210. doi: 10.1109/TCOMM.2024.3357611.
|
[14] |
REN Jianxin, XIA Wenchao, LIU Bo, et al. Performance and security improvement of three-dimensional orthogonal chirp division multiplexing system with 2D-IDFnT[J]. Journal of Lightwave Technology, 2024, 42(16): 5544–5551. doi: 10.1109/JLT.2024.3398993.
|
[15] |
CHEN Shuaidong, REN Jianxin, LIU Bo, et al. Performance improvement of non-orthogonal multiple access with a 3D constellation and a 2D IFFT modulator[J]. Optics Express, 2023, 31(5): 7425–7439. doi: 10.1364/OE.483799.
|
[16] |
吴锐. 基于混沌系统的OFDM安全传输方案研究[D]. [硕士论文], 西安电子科技大学, 2023. doi: 10.27389/d.cnki.gxadu.2023.000510.
WU Rui. Research on OFDM secure transmission scheme based on chaotic system[D]. [Master dissertation], Xidian University, 2023. doi: 10.27389/d.cnki.gxadu.2023.000510.
|
[17] |
CHEN Gengyin, LIU Bo, REN Jianxin, et al. Three-dimensional non-orthogonal multiple access high-security seven-core transmission system based on constellation chaotic selection mapping[J]. Journal of Lightwave Technology, 2024, 42(17): 5910–5917. doi: 10.1109/JLT.2024.3406722.
|
[18] |
CHEN Yuhua, ZHAO Lei, JIANG Yuan, et al. OTFS waveform based on 3-D signal constellation for time-variant channels[J]. IEEE Communications Letters, 2023, 27(8): 1999–2003. doi: 10.1109/LCOMM.2023.3286413.
|
[19] |
REN Jianxin, LIU Bo, WU Xiangyu, et al. Three-dimensional probabilistically shaped CAP modulation based on constellation design using regular tetrahedron cells[J]. Journal of Lightwave Technology, 2020, 38(7): 1728–1734. doi: 10.1109/JLT.2019.2955728.
|
[20] |
ZHANG Yiqun, JIANG Ning, ZHAO Anke, et al. Security enhancement in coherent OFDM optical transmission with chaotic three-dimensional constellation scrambling[J]. Journal of Lightwave Technology, 2022, 40(12): 3749–3760. doi: 10.1109/JLT.2022.3154091.
|
[21] |
CAI Xiangming, YUEN C, HUANG Chongwen, et al. Toward chaotic secure communications: An RIS enabled M-Ary differential chaos shift keying system with block interleaving[J]. IEEE Transactions on Communications, 2023, 71(6): 3541–3558. doi: 10.1109/TCOMM.2023.3262834.
|
[22] |
BAO Han, WANG Zhuowu, HUA Zhongyun, et al. Initial-offset-control coexisting hyperchaos in two-dimensional discrete neuron model[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 4784–4794. doi: 10.1109/TII.2023.3327566.
|
[23] |
KANEKO K. Spatiotemporal intermittency in coupled map lattices[J]. Progress of Theoretical Physics, 1985, 74(5): 1033–1044. doi: 10.1143/PTP.74.1033.
|
[24] |
WEBER A. The USC-SIPI image database[EB/OL]. https://sipi.usc.edu/database/, 1977.
|