Citation: | ZHANG Lijuan, SHA Sha, ZHONG Huaqian. Efficient Blind Detection Clustering Algorithm for Reconfigurable Intelligent Surface-aided Spatial Modulation Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250162 |
[1] |
CHATAUT R, NANKYA M, and AKL R. 6G networks and the AI revolution–exploring technologies, applications, and emerging challenges[J]. Sensors, 2024, 24(6): 1888. doi: 10.3390/s24061888.
|
[2] |
BANAFAA M, SHAYEA I, DIN J, et al. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities[J]. Alexandria Engineering Journal, 2023, 64: 245–274. doi: 10.1016/j.aej.2022.08.017.
|
[3] |
BASAR E, ALEXANDROPOULOS G C, LIU Yuanwei, et al. Reconfigurable intelligent surfaces for 6G: Emerging hardware architectures, applications, and open challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(3): 27–47. doi: 10.1109/MVT.2024.3415570.
|
[4] |
MU Xidong, XU Jiaqi, LIU Yuanwei, et al. Reconfigurable intelligent surface-aided near-field communications for 6G: Opportunities and challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(1): 65–74. doi: 10.1109/MVT.2023.3345608.
|
[5] |
OZDEN B A, COGEN F, AYDIN E, et al. A novel reconfigurable intelligent surface-supported code index modulation-based receive spatial modulation system[C]. 2024 IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10571099.
|
[6] |
MANDLOI M, GURJAR D, PATTANAYAK P, et al. 5G and Beyond Wireless Systems[M]. Singapore, Singapore: Springer, 2021. doi: 10.1007/978-981-15-6390-4.
|
[7] |
张晓茜, 徐勇军, 吴翠先, 等. 智能反射面增强的全双工环境反向散射通信系统波束成形算法[J]. 电子与信息学报, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.
ZHANG Xiaoxi, XU Yongjun, WU Cuixian, et al. Beamforming design for reconfigurable intelligent surface enhanced full-duplex ambient backscatter communication networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.
|
[8] |
陈平平, 张云馨, 杜伟庆. 可重构智能表面辅助的联合空间和码索引调制通信系统[J]. 电子与信息学报, 2025, 47(4): 439–488. doi: 10.11999/JEIT240987.
CHEN Pingping, ZHANG Yunxin, and DU Weiqing. Reconfigurable intelligent surface-aided joint spatial and code index modulation communication system[J]. Journal of Electronics & Information Technology, 2025, 47(4): 439–488. doi: 10.11999/JEIT240987.
|
[9] |
徐勇军, 符加劲, 黄琼, 等. 智能反射面辅助的多天线通信系统鲁棒安全资源分配算法[J]. 电子与信息学报, 2024, 46(1): 165–174. doi: 10.11999/JEIT221554.
XU Yongjun, FU Jiajin, HUANG Qiong, et al. Robust secure resource allocation algorithm for intelligent reflecting surface-assisted multi-antenna communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(1): 165–174. doi: 10.11999/JEIT221554.
|
[10] |
REN Zhangbo, HUANG Kaizhi, JIANG Wenyu, et al. Reconfigurable intelligent surface enhanced MISO-OFDM anti-jamming communications: Joint active and passive precoding design[J]. IET Communications, 2023, 17(6): 712–725. doi: 10.1049/cmu2.12575.
|
[11] |
AN Jiancheng, XU Chao, NG D W K, et al. Adjustable-delay RIS is capable of improving OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9927–9942. doi: 10.1109/TVT.2024.3362953.
|
[12] |
SUI Zeping, NGO H Q, VAN CHIEN T, et al. RIS-assisted cell-free massive MIMO relying on reflection pattern modulation[J]. IEEE Transactions on Communications, 2025, 73(2): 968–982. doi: 10.1109/TCOMM.2024.3446589.
|
[13] |
MENG Shengguo, TANG Wankai, CHEN Weicong, et al. Rank optimization for MIMO channel with RIS: Simulation and measurement[J]. IEEE Wireless Communications Letters, 2024, 13(2): 437–441. doi: 10.1109/LWC.2023.3331489.
|
[14] |
YUE Xinwei, SONG Meiqi, OUYANG Chongjun, et al. Exploiting active RIS in NOMA networks with hardware impairments[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8207–8221. doi: 10.1109/TVT.2024.3352813.
|
[15] |
ZHANG Weilin, WANG Lingyi, MAO Hangtao, et al. Throughput maximization for irregular reconfigurable intelligent surface assisted NOMA systems[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 111. doi: 10.1186/s13634-023-01076-1.
|
[16] |
LI Xuehua, LIAN Xuanhao, YUE Xinwei, et al. Performance analysis of double reconfigurable intelligent surfaces assisted NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 18732–18747. doi: 10.1109/TVT.2024.3435033.
|
[17] |
WEN Miaowen, ZHENG Beixiong, KIM K J, et al. A survey on spatial modulation in emerging wireless systems: Research progresses and applications[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(9): 1949–1972. doi: 10.1109/JSAC.2019.2929453.
|
[18] |
OBADHA J A, AKUON P O, and ODUOL V K. Generalized antenna sequence spatial modulation (GASSM): A novel framework for enhanced PHY layer security and energy efficiency[J]. Journal of Electrical Systems and Information Technology, 2024, 11(1): 9. doi: 10.1186/s43067-023-00133-x.
|
[19] |
FU Dan and YIN Xiaogui. OFDM with double spatial modulation for improving the reliability of wireless communication[J]. Journal of Physics: Conference Series, 2021, 2033: 012018. doi: 10.1088/1742-6596/2033/1/012018.
|
[20] |
ZHANG Chaorong, PENG Yuyang, LI Jun, et al. An IRS-aided GSSK scheme for wireless communication system[J]. IEEE Communications Letters, 2022, 26(6): 1398–1402. doi: 10.1109/LCOMM.2022.3159818.
|
[21] |
BASAR E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G[J]. IEEE Transactions on Communications, 2020, 68(5): 3187–3196. doi: 10.1109/TCOMM.2020.2971486.
|
[22] |
MA Teng, XIAO Yue, LEI Xia, et al. Large intelligent surface assisted wireless communications with spatial modulation and antenna selection[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2562–2574. doi: 10.1109/JSAC.2020.3007044.
|
[23] |
LIU Jiang and DI RENZO M. Data-driven and model-driven deep learning detection for RIS-aided spatial modulation[C]. 2021 IEEE 4th 5G World Forum, Montreal, Canada, 2021: 88–92. doi: 10.1109/5GWF52925.2021.00023.
|
[24] |
YANG Wanning, LI Ming, and LIU Qian. A novel anchor-assisted channel estimation for RIS-aided multiuser communication systems[J]. IEEE Communications Letters, 2022, 26(11): 2740–2744. doi: 10.1109/LCOMM.2022.3179298.
|
[25] |
XIE Wenwu, XIAO Jian, ZHU Peng, et al. Multi-task learning-based channel estimation for RIS assisted multi-user communication systems[J]. IEEE Communications Letters, 2022, 26(3): 577–581. doi: 10.1109/LCOMM.2021.3138082.
|
[26] |
CHU Hongyun, PAN Xue, JIANG Jing, et al. Adaptive and robust channel estimation for IRS-aided millimeter-wave communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9411–9423. doi: 10.1109/TVT.2024.3385776.
|
[27] |
YOU Longfei, YANG Ping, XIAO Yue, et al. Blind detection for spatial modulation systems based on clustering[J]. IEEE Communications Letters, 2017, 21(11): 2392–2395. doi: 10.1109/LCOMM.2017.2734648.
|
[28] |
ARTHUR D and VASSILVITSKII S. k-means++: The advantages of careful seeding[C]. The Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007: 1027–1035.
|
[29] |
ZHANG Lijuan and JIN Minglu. A constrained clustering-based blind detector for spatial modulation[J]. IEEE Communications Letters, 2019, 23(7): 1170–1173. doi: 10.1109/LCOMM.2019.2915304.
|
[30] |
ABUTHINIEN M, CHEN Sheng, WOLFGANG A, et al. Joint maximum likelihood channel estimation and data detection for MIMO systems[C]. 2007 IEEE International Conference on Communications, Glasgow, UK, 2007: 5354–5358. doi: 10.1109/ICC.2007.886.
|