Citation: | HUO Ru, LÜ Kecheng, HUANG Tao. Task Segmentation and Computing Resource Allocation Method Driven by Path Prediction in Internet of Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250135 |
[1] |
IP A, IRIO L, and OLIVEIRA R. Vehicle trajectory prediction based on LSTM recurrent neural networks[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–5. doi: 10.1109/VTC2021-Spring51267.2021.9449038.
|
[2] |
LIANG Ming, YANG Bin, ZENG Wenyuan, et al. PnPNet: End-to-end perception and prediction with tracking in the loop[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11550–11559. doi: 10.1109/CVPR42600.2020.01157.
|
[3] |
LAGOUTARIS V and MOUSTAKAS K. Motion prediction of traffic agents with hybrid recurrent-convolutional neural networks[C]. 2023 24th International Conference on Digital Signal Processing (DSP), Rhodes (Rodos), Greece, 2023: 1–5. doi: 10.1109/DSP58604.2023.10167941.
|
[4] |
QIAO Shaojie, HAN Nan, WANG Junfeng, et al. Predicting long-term trajectories of connected vehicles via the prefix-projection technique[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7): 2305–2315. doi: 10.1109/TITS.2017.2750075.
|
[5] |
HAO Zixu, HUANG Xing, WANG Kaige, et al. Attention -based GRU for driver intention recognition and vehicle trajectory prediction[C]. 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), Hangzhou, China, 2020: 86–91. doi: 10.1109/CVCI51460.2020.9338510.
|
[6] |
MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(1): 175–185. doi: 10.1109/TIV.2020.2991952.
|
[7] |
QIE Tianqi, WANG Weida, YANG Chao, et al. Trajectory prediction method using deep learning for intelligent and connected vehicles[C]. 2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS), Wuhan, China, 2023: 1–5. doi: 10.1109/ICPS58381.2023.10128049.
|
[8] |
LIU Xulei, WANG Yafei, JIANG Kun, et al. Interactive trajectory prediction using a driving risk map-integrated deep learning method for surrounding vehicles on highways[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19076–19087. doi: 10.1109/TITS.2022.3160630.
|
[9] |
SINGH A. Trajectory-prediction with vision: A survey[C]. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, France, 2023: 3310–3315. doi: 10.1109/ICCVW60793.2023.00356.
|
[10] |
WANG Haipeng, LIN Zhipeng, GUO Kun, et al. Computation offloading based on game theory in MEC-assisted V2X networks[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. doi: 10.1109/ICCWorkshops50388.2021.9473788.
|
[11] |
TANG Dian, ZHANG Xuefei, and TAO Xiaofeng. Delay-optimal temporal-spatial computation offloading schemes for vehicular edge computing systems[C]. 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019: 1–6. doi: 10.1109/WCNC.2019.8885702.
|
[12] |
PHAM X Q, HUYNH-THE T, HUH E N, et al. Partial computation offloading in parked vehicle-assisted multi-access edge computing: A game-theoretic approach[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 10220–10225. doi: 10.1109/TVT.2022.3182378.
|
[13] |
ZHANG Haibo, LIU Xiangyu, XU Yongjun, et al. Partial offloading and resource allocation for MEC-assisted vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 1276–1288. doi: 10.1109/TVT.2023.3306939.
|
[14] |
QIN Meng, CHENG Nan, JING Zewei, et al. Service-oriented energy-latency tradeoff for IoT task partial offloading in MEC-enhanced multi-RAT networks[J]. IEEE Internet of Things Journal, 2021, 8(3): 1896–1907. doi: 10.1109/JIOT.2020.3015970.
|
[15] |
WU Yuan, SHI Binghua, QIAN Liping, et al. Energy-efficient multi-task multi-access computation offloading via NOMA transmission for IoTs[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4811–4822. doi: 10.1109/TII.2019.2944839.
|
[16] |
MALEKI H, BAŞARAN M, and DURAK-ATA L. Handover-enabled dynamic computation offloading for vehicular edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9394–9405. doi: 10.1109/TVT.2023.3247889.
|
[17] |
ZHANG Cui, ZHANG Wenjun, WU Qiong, et al. Distributed deep reinforcement learning-based gradient quantization for federated learning enabled vehicle edge computing[J]. IEEE Internet of Things Journal, 2025, 12(5): 4899–4913. doi: 10.1109/JIOT.2024.3447036.
|
[18] |
YUAN Jing, ZHENG Yu, XIE Xing, et al. Driving with knowledge from the physical world[C]. The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, USA, 2011: 316–324. doi: 10.1145/2020408.2020462.
|
[19] |
YUAN Jing, ZHENG YÜ, ZHANG Chengyang, et al. T-drive: Driving directions based on taxi trajectories[C]. 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 99–108. doi: 10.1145/1869790.1869807.
|
[20] |
LIN Jie, HUANG Siqi, ZHANG Hanlin, et al. A deep-reinforcement-learning-based computation offloading with mobile vehicles in vehicular edge computing[J]. IEEE Internet of Things Journal, 2023, 10(17): 15501–15514. doi: 10.1109/JIOT.2023.3264281.
|
[21] |
DENG Taoyu, CHEN Yueyun, CHEN Guang, et al. Task offloading based on edge collaboration in MEC-enabled IoV networks[J]. Journal of Communications and Networks, 2023, 25(2): 197–207. doi: 10.23919/JCN.2023.000004.
|