Advanced Search
Volume 46 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
LIU Ting, WANG Yuan, XIN Yuanxue. Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584
Citation: LIU Ting, WANG Yuan, XIN Yuanxue. Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4002-4008. doi: 10.11999/JEIT240584

Deep Learning-enhanced Massive Channel Estimation for Reconfigurable Intelligent Surface-aided Massive Machine-Type Communication

doi: 10.11999/JEIT240584
Funds:  The National Natural Science Foundation of China (62101274), The Natural Science Foundation of Jiangsu Province (BK20210640)
  • Received Date: 2024-07-09
  • Rev Recd Date: 2024-09-14
  • Available Online: 2024-09-24
  • Publish Date: 2024-10-30
  • Massive Machine-Type Communication (mMTC) is one of the typical scenarios of the fifth-generation mobile communications systems, and nearly one million devices per square kilometer can be connected under this circumstance. The Reconfigurable Intelligent Surface (RIS) is applied for the grant-free uplink transmission due to the complexity of the propagation environment in the scenario of massive connectivity. Then, the cascaded channel, i.e., the channel link between devices and the RIS, as well as the channel link between the RIS and the Base Station (BS), is formed. Consequently, the quality of the wireless signal transmission can be controlled effectively. On this basis, a denoising learning system is designed using the principle of turbo decoding message passing. The RIS-aided cascaded CSI is learned and estimated through a large number of training data. In addition, the statistical analysis of the RIS-assisted mMTC channel estimation is performed to verify the accuracy of the proposed scheme. Numerical simulation results and theoretical analyses show that the proposed technique is superior to other compressed-sensing-type methods.
  • loading
  • [1]
    YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [2]
    IMT-2030 (6G) 推进组. 6G无线系统设计原则和典型特征白皮书[R]. 2023.

    IMT-2030 (6G) Promotion Group. White paper on 6G wireless system design principles and typical characteristics[R]. 2023.
    [3]
    尤肖虎, 许威, 相红, 等. 6G发展趋势与候选关键技术分析[J]. 信息通信技术, 2023, 17(6): 11–20,27. doi: 10.3969/j.issn.1674-1285.2023.06.003.

    YOU Xiaohu, XU Wei, XIANG Hong, et al. 6G network evolution and key candidate technologies[J]. Information and Communications Technologies, 2023, 17(6): 11–20,27. doi: 10.3969/j.issn.1674-1285.2023.06.003.
    [4]
    ELHOUSHY S, IBRAHIM M, and HAMOUDA W. Cell-free massive MIMO: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 492–523. doi: 10.1109/COMST.2021.3123267.
    [5]
    LIU Ting, JIN Shi, WEN Chaokai, et al. Generalized channel estimation and user detection for massive connectivity with mixed-ADC massive MIMO[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3236–3250. doi: 10.1109/TWC.2019.2912370.
    [6]
    朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [7]
    张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [8]
    PAN Cunhua, ZHOU Gui, ZHI Kangda, et al. An overview of signal processing techniques for RIS/IRS-aided wireless systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 883–917. doi: 10.1109/JSTSP.2022.3195671.
    [9]
    TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055.
    [10]
    NGUYEN N T, NGUYEN V D, NGUYEN H V, et al. Spectral efficiency analysis of hybrid relay-reflecting intelligent surface-assisted cell-free massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3397–3416. doi: 10.1109/TWC.2022.3217828.
    [11]
    HE Jinglian, YU Kaiqiang, SHI Yuanming, et al. Reconfigurable intelligent surface assisted massive MIMO with antenna selection[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4769–4783. doi: 10.1109/TWC.2021.3133272.
    [12]
    BASHARAT S, HASSAN S A, PERVAIZ H, et al. Reconfigurable intelligent surfaces: Potentials, applications, and challenges for 6G wireless networks[J]. IEEE Wireless Communications, 2021, 28(6): 184–191. doi: 10.1109/MWC.011.2100016.
    [13]
    LIESEGANG S, ZAPPONE A, MUÑOZ O, et al. Rate optimization for RIS-aided mMTC networks in the finite blocklength regime[J]. IEEE Communications Letters, 2023, 27(3): 921–925. doi: 10.1109/LCOMM.2022.3231717.
    [14]
    CHEN Zhen, HUANG Lei, XIA Shuqiang, et al. Parallel channel estimation for RIS-assisted internet of things[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9762–9773. doi: 10.1109/TITS.2024.3364248.
    [15]
    CHEN Jianqiao, MA Nan, XU Xiaodong, et al. Efficient two-level block-structured sparse Bayesian learning-based channel estimation for RIS-assisted MIMO IoT systems[J]. IEEE Internet of Things Journal, 2024, 11(14): 24933–24947. doi: 10.1109/JIOT.2024.3387885.
    [16]
    HOU Tianwei, LIU Yuanwei, SONG Zhengyu, et al. Reconfigurable intelligent surface aided NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2575–2588. doi: 10.1109/JSAC.2020.3007039.
    [17]
    SAGIR B, AYDIN E, and ILHAN H. Deep-learning-assisted IoT-based RIS for cooperative communications[J]. IEEE Internet of Things Journal, 2023, 10(12): 10471–10483. doi: 10.1109/JIOT.2023.3239818.
    [18]
    NGUYEN C, HOANG T M, and CHEEMA A A. Channel estimation using CNN-LSTM in RIS-NOMA assisted 6G network[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2023, 1: 43–60. doi: 10.1109/TMLCN.2023.3278232.
    [19]
    BAI Yanna, CHEN Wei, AI Bo, et al. Prior information aided deep learning method for grant-free NOMA in mMTC[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(1): 112–126. doi: 10.1109/JSAC.2021.3126071.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (286) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return