| Citation: | LIU Miao, XIA Yuhong, ZHAO Haitao, GUO Liang, SHI Zheng, ZHU Hongbo. Federated Learning Technologies for 6G Industrial Internet of Things: From Requirements, Vision to Challenges, Opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4335-4353. doi: 10.11999/JEIT240574 | 
 
	                | [1] | MUMTAZ S, BO A, AL-DULAIMI A, et al. Guest editorial 5G and beyond mobile technologies and applications for industrial IoT (IIoT)[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2588–2591. doi:  10.1109/TII.2018.2823311. | 
| [2] | LU Yang and ZHENG Xianrong. 6G: A survey on technologies, scenarios, challenges, and the related issues[J]. Journal of Industrial Information Integration, 2020, 19: 100158. doi:  10.1016/j.jii.2020.100158. | 
| [3] | GUI Guan, LIU Miao, TANG Fengxiao, et al. 6G: Opening new horizons for integration of comfort, security, and intelligence[J]. IEEE Wireless Communications, 2020, 27(5): 126–132. doi:  10.1109/MWC.001.1900516. | 
| [4] | LETAIEF K B, CHEN Wei, SHI Yuanming, et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57(8): 84–90. doi:  10.1109/MCOM.2019.1900271. | 
| [5] | AMBIKA P. Machine learning and deep learning algorithms on the Industrial Internet of Things (IIoT)[J]. Advances in Computers, 2020, 117(1): 321–338. doi:  10.1016/BS.ADCOM.2019.10.007. | 
| [6] | QVIST-SØRENSEN P. Applying IIoT and AI–Opportunities, requirements and challenges for industrial machine and equipment manufacturers to expand their services[J]. Central European Business Review, 2020, 9(2): 46–77. doi:  10.18267/j.cebr.234. | 
| [7] | MAO Yuyi, YU Xianghao, HUANG Kaibin, et al. Green edge AI: A contemporary survey[J]. Proceedings of the IEEE, 2024, 112(7): 880–911. doi:  10.1109/JPROC.2024.3437365. | 
| [8] | ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1323. | 
| [9] | ZHOU Tailin, ZHANG Jun, and TSANG D H K. FedFA: Federated learning with feature anchors to align features and classifiers for heterogeneous data[J]. IEEE Transactions on Mobile Computing, 2024, 23(6): 6731–6742. doi:  10.1109/TMC.2023.3325366. | 
| [10] | 范绍帅, 吴剑波, 田辉. 面向能量受限工业物联网设备的联邦学习资源管理[J]. 通信学报, 2022, 43(8): 65–77. doi:  10.11959/j.issn.1000−436x.2022126. FAN Shaoshuai, WU Jianbo, and TIAN Hui. Federated learning resource management for energy-constrained industrial IoT devices[J]. Journal on Communications, 2022, 43(8): 65–77. doi:  10.11959/j.issn.1000−436x.2022126. | 
| [11] | BASU D, GHOSH U, and DATTA R. 6G for industry 5.0 and smart CPS: A journey from challenging hindrance to opportunistic future[C]. 2022 IEEE Silchar Subsection Conference, Silchar, India, 2022: 1–6. doi:  10.1109/SILCON55242.2022.10028927. | 
| [12] | NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for industrial internet of things in future industries[J]. IEEE Wireless Communications, 2021, 28(6): 192–199. doi:  10.1109/MWC.001.2100102. | 
| [13] | BOOBALAN P, RAMU S P, PHAM Q V, et al. Fusion of federated learning and industrial internet of things: A survey[J]. Computer Networks, 2022, 212: 109048. doi:  10.1016/j.comnet.2022.109048. | 
| [14] | BERGHOUT T, BENBOUZID M, BENTRCIA T, et al. Federated learning for condition monitoring of industrial processes: A review on fault diagnosis methods, challenges, and prospects[J]. Electronics, 2022, 12(1): 158. doi:  10.3390/electronics12010158. | 
| [15] | LIU Yi, YUAN Xingliang, XIONG Zehui, et al. Federated learning for 6G communications: Challenges, methods, and future directions[J]. China Communications, 2020, 17(9): 105–118. doi:  10.23919/JCC.2020.09.009. | 
| [16] | GHILDIYAL Y, SINGH R, ALKHAYYAT A, et al. An imperative role of 6G communication with perspective of industry 4.0: Challenges and research directions[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103047. doi:  10.1016/j.seta.2023.103047. | 
| [17] | ZHU Guangxu, LYU Zhonghao, JIAO Xiang, et al. Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G[J]. Science China Information Sciences, 2023, 66(3): 130301. doi:  10.1007/s11432-022-3652-2. | 
| [18] | GONG Yongkang, YAO Haipeng, WANG Jingjing,    et al. Edge intelligence-driven joint offloading and resource allocation for future 6G industrial internet of things[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(6): 5644–5655. doi 10.1109/TNSE.2022.3141728. | 
| [19] | HIESSL T, SCHALL D, KEMNITZ J,    et al. Industrial federated learning–requirements and system design[C]. The International Conference on Practical Applications of Agents and Multi-Agent Systems, L’Aquila, Italy, 2020: 42–53. doi:  10.1007/978-3-030-51999-5_4. | 
| [20] | MAKKAR A, KIM T W, SINGH A K, et al. SecureIIoT environment: Federated learning empowered approach for securing IIoT from data breach[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6406–6414. doi:  10.1109/TII.2022.3149902. | 
| [21] | YE Mang, FANG Xiuwen, DU Bo, et al. Heterogeneous federated learning: State-of-the-art and research challenges[J]. ACM Computing Surveys, 2024, 56(3): 79. doi:  10.1145/3625558. | 
| [22] | TANG Fengxiao, CHEN Xuehan, RODRIGUES T K, et al. Survey on Digital Twin Edge Networks (DITEN) toward 6G[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1360–1381. doi:  10.1109/OJCOMS.2022.3197811. | 
| [23] | LIN Xingqin, KUNDU L, DICK C, et al. 6G digital twin networks: From theory to practice[J]. IEEE Communications Magazine, 2023, 61(11): 72–78. doi:  10.1109/MCOM.001.2200830. | 
| [24] | LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Communication-efficient federated learning for digital twin edge networks in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5709–5718. doi:  10.1109/tii.2020.3010798. | 
| [25] | LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Communication-efficient federated learning and permissioned blockchain for digital twin edge networks[J]. IEEE Internet of Things Journal, 2021, 8(4): 2276–2288. doi:  10.1109/JIOT.2020.3015772. | 
| [26] | PRAHARAJ L, GUPTA M, and GUPTA D. Hierarchical federated transfer learning and digital twin enhanced secure cooperative smart farming[C]. 2023 IEEE International Conference on Big Data, Sorrento, Italy, 2023: 3304–3313. doi:  10.1109/BigData59044.2023.10386345. | 
| [27] | TAO Fei, ZHANG He, and ZHANG Chenyuan. Advancements and challenges of digital twins in industry[J]. Nature Computational Science, 2024, 4(3): 169–177. doi:  10.1038/s43588-024-00603-w. | 
| [28] | RAMU S P, BOOPALAN P, PHAM Q V, et al. Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions[J]. Sustainable Cities and Society, 2022, 79: 103663. doi:  10.1016/j.scs.2021.103663. | 
| [29] | GUO Jingjing, LIU Zhiquan, TIAN Siyi, et al. TFL-DT: A trust evaluation scheme for federated learning in digital twin for mobile networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(11): 3548–3560. doi:  10.1109/JSAC.2023.3310094. | 
| [30] | HE Yejun, YANG Mengna, ZHOU He, et al. Computation offloading and resource allocation based on DT-MEC-assisted federated learning framework[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(6): 1707–1720. doi:  10.1109/TCCN.2023.3298926. | 
| [31] | QADIR Z, LE K N, SAEED N, et al. Towards 6G Internet of Things: Recent advances, use cases, and open challenges[J]. ICT Express, 2023, 9(3): 296–312. doi:  10.1016/j.icte.2022.06.006. | 
| [32] | QUY V K, NGUYEN D C, VAN ANH D, et al. Federated learning for green and sustainable 6G IIoT applications[J]. Internet of Things, 2024, 25: 101061. doi:  10.1016/j.iot.2024.101061. | 
| [33] | YANG Wei, XIANG Wei, YANG Yuan, et al. Optimizing Federated Learning With Deep Reinforcement Learning for Digital Twin Empowered Industrial IoT [J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1884-1893. doi:  10.1109/TII.2022.3183465. | 
| [34] | FARAHANI B and MONSEFI A K. Smart and collaborative industrial IoT: A federated learning and data space approach[J]. Digital Communications and Networks, 2023, 9(2): 436–447. doi:  10.1016/j.dcan.2023.01.022. | 
| [35] | CHEN Jianrui, WANG Jingjing, JIANG Chunxiao, et al. Trustworthy semantic communications for the metaverse relying on federated learning[J]. IEEE Wireless Communications, 2023, 30(4): 18–25. doi:  10.1109/MWC.001.2200587. | 
| [36] | OOI M P L, SOHAIL S, HUANG V G, et al. Measurement and applications: Exploring the challenges and opportunities of hierarchical federated learning in sensor applications[J]. IEEE Instrumentation & Measurement Magazine, 2023, 26(9): 21–31. doi:  10.1109/MIM.2023.10328671. | 
| [37] | ZHU Juncen, CAO Jiannong, SAXENA D, et al. Blockchain-empowered federated learning: Challenges, solutions, and future directions[J]. ACM Computing Surveys, 2023, 55(11): 240. doi:  10.1145/3570953. | 
| [38] | LIU Shimin, LU Yuqian, SHEN Xingwang, et al. A digital thread-driven distributed collaboration mechanism between digital twin manufacturing units[J]. Journal of Manufacturing Systems, 2023, 68: 145–159. doi:  10.1016/j.jmsy.2023.02.014. | 
| [39] | CRONIN C, CONWAY A, and WALSH J. Flexible manufacturing systems using IIoT in the automotive sector[J]. Procedia Manufacturing, 2019, 38: 1652–1659. doi:  10.1016/j.promfg.2020.01.119. | 
| [40] | TSAI Y H, CHANG D M, and HSU T C. Edge computing based on federated learning for machine monitoring[J]. Applied Sciences, 2022, 12(10): 5178. doi:  10.3390/app12105178. | 
| [41] | GUO Sheng, LI Zengxiang, LIU Hui,    et al. Personalized federated learning for multi-task fault diagnosis of rotating machinery[J]. arXiv preprint arXiv: 2211.09406, 2022. | 
| [42] | CHEN Baotong, WAN Jiafu, LAN Yanting, et al. Improving cognitive ability of edge intelligent IIoT through machine learning[J]. IEEE Network, 2019, 33(5): 61–67. doi:  10.1109/MNET.001.1800505. | 
| [43] | GUO Qi, TANG Fengxiao, and KATO N. Federated reinforcement learning-based resource allocation for D2D-aided digital twin edge networks in 6G industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7228–7236. doi:  10.1109/TII.2022.3227655. | 
| [44] | SUN Fanglei and DIAO Zhifeng. Federated learning and blockchain-enabled intelligent manufacturing for sustainable energy production in industry 4.0[J]. Processes, 2023, 11(5): 1482. doi:  10.3390/pr11051482. | 
| [45] | TARIQ M, ALI M, NAEEM F, et al. Vulnerability assessment of 6G-enabled smart grid cyber–physical systems[J]. IEEE Internet of Things Journal, 2021, 8(7): 5468–5475. doi:  10.1109/JIOT.2020.3042090. | 
| [46] | BOUZINIS P S, DIAMANTOULAKIS P D, and KARAGIANNIDIS G K. Wireless federated learning (WFL) for 6G networks Part I: Research challenges and future trends[J]. IEEE Communications Letters, 2022, 26(1): 3–7. doi:  10.1109/LCOMM.2021.3121071. | 
| [47] | CHAUDHARY R, AUJLA G S, GARG S, et al. SDN-enabled multi-attribute-based secure communication for smart grid in IIoT environment[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2629–2640. doi:  10.1109/TII.2018.2789442. | 
| [48] | WEN Mi, XIE Rong, LU Kejie, et al. FedDetect: A novel privacy-preserving federated learning framework for energy theft detection in smart grid[J]. IEEE Internet of Things Journal, 2022, 9(8): 6069–6080. doi:  10.1109/JIOT.2021.3110784. | 
| [49] | XIAO Lijun, HAN Dezhi, YANG Ce, et al. TS-DP: An efficient data processing algorithm for distribution digital twin grid for industry 5.0[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 1983–1994. doi:  10.1109/TCE.2023.3332099. | 
| [50] | PÉREZ S, PÉREZ J, ARROBA P,    et al. Predictive GPU-based ADAS management in energy-conscious smart cities[C]. 2019 IEEE International Smart Cities Conference, Casablanca, Morocco, 2019: 349–354. doi:  10.1109/ISC246665.2019.9071685. | 
| [51] | TAÏK A and CHERKAOUI S. Electrical load forecasting using edge computing and federated learning[C]. The IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6. doi:  10.1109/ICC40277.2020.9148937. | 
| [52] | CAO Hui, LIU Shubo, ZHAO Renfang,    et al. IFed: A novel federated learning framework for local differential privacy in power internet of things[J]. International Journal of Distributed Sensor Networks, 2020, 16(5): 1550147720919698. doi:  10.1177/1550147720919698. | 
| [53] | BOUACHIR O, ALOQAILY M, ÖZKASAP Ö, et al. FederatedGrids: Federated learning and blockchain-assisted P2P energy sharing[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 424–436. doi:  10.1109/TGCN.2022.3140978. | 
| [54] | SHAHID O, POURIYEH S, PARIZI R M,    et al. Communication efficiency in federated learning: Achievements and challenges[J]. arXiv preprint arXiv: 2107.10996, 2021. | 
| [55] | SHLEZINGER N, CHEN Mingzhe, ELDAR Y C,    et al. Federated learning with quantization constraints[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 8851–8855. doi:  10.1109/ICASSP40776.2020.9054168. | 
| [56] | HUANG Anbu, CHEN Yuanyuan, LIU Yang,    et al. RPN: A residual pooling network for efficient federated learning[C]. Proceedings of the 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 2020: 1223–1229. | 
| [57] | IMTEAJ A, THAKKER U, WANG Shiqiang, et al. A survey on federated learning for resource-constrained IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(1): 1–24. doi:  10.1109/JIOT.2021.3095077. | 
| [58] | JIANG Yuang, WANG Shiqiang, VALLS V, et al. Model pruning enables efficient federated learning on edge devices[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10374–10386. doi:  10.1109/TNNLS.2022.3166101. | 
| [59] | WU Chuhan, WU Fengzhao, LYU Lingjuan, et al. Communication-efficient federated learning via knowledge distillation[J]. Nature Communications, 2022, 13(1): 2032. doi:  10.1038/s41467-022-29763-x. | 
| [60] | XIA Dan, JIANG Chun, WAN Jiafu, et al. Heterogeneous network access and fusion in smart factory: A survey[J]. ACM Computing Surveys, 2023, 55(6): 113. doi:  10.1145/3530815. | 
| [61] | PRAKASH S and AVESTIMEHR A S. Mitigating byzantine attacks in federated learning[J]. arXiv preprint arXiv: 2010.07541, 2020. | 
| [62] | XU Chenhao, QU Youyang, XIANG Yong, et al. Asynchronous federated learning on heterogeneous devices: A survey[J]. Computer Science Review, 2023, 50: 100595. doi:  10.1016/j.cosrev.2023.100595. | 
| [63] | SUN Wen, LEI Shiyu, WANG Lu, et al. Adaptive federated learning and digital twin for industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5605–5614. doi:  10.1109/TII.2020.3034674. | 
| [64] | ABDELMONIEM A M, SAHU A N, CANINI M,    et al. REFL: Resource-efficient federated learning[C]. The Eighteenth European Conference on Computer Systems, Rome Italy, 2023: 215–232. doi:  10.1145/3552326.3567485. | 
| [65] | CAO Mei, ZHANG Yujie, MA Zezhong, et al. C2S: Class-aware client selection for effective aggregation in federated learning[J]. High-Confidence Computing, 2022, 2(3): 100068. doi:  10.1016/j.hcc.2022.100068. | 
| [66] | TAN A Z, HAN Yu, CUI Lizhen, et al. Towards personalized federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 9587–9603. doi:  10.1109/TNNLS.2022.3160699. | 
| [67] | DENG Yongheng, CHEN Weining, REN Ju,    et al. TailorFL: Dual-personalized federated learning under system and data heterogeneity[C]. The 20th ACM Conference on Embedded Networked Sensor Systems, Boston, USA, 2022: 592–606. doi:  10.1145/3560905.3568503. | 
| [68] | REN Lei, LI Yingjie, WANG Xiaokang, et al. An ABGE-aided manufacturing knowledge graph construction approach for heterogeneous IIoT data integration[J]. International Journal of Production Research, 2023, 61(12): 4102–4116. doi:  10.1080/00207543.2022.2042416. | 
| [69] | ZHANG Kai, WANG Yu, WANG Hongyi,    et al. Efficient federated learning on knowledge graphs via privacy-preserving relation embedding aggregation[C]. The Findings of the Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2022: 613–621. doi:  10.18653/v1/2022.findings-emnlp.43. | 
| [70] | ZHU Xiangrong, LI Guangyao, and HU Wei. Heterogeneous federated knowledge graph embedding learning and unlearning[C]. The ACM Web Conference 2023, Austin, USA, 2023: 2444–2454. doi:  10.1145/3543507.3583305. | 
| [71] | EK K, PORTET F, LALANDA P,    et al. A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison[C]. 2021 IEEE International Conference on Pervasive Computing and Communications, Kassel, Germany, 2021: 1–10. doi:  10.1109/PERCOM50583.2021.9439129. | 
| [72] | SEN S, NIELSEN S M, HUSOM E J,    et al. Replay-driven continual learning for the industrial internet of things[C]. The 2023 IEEE/ACM 2nd International Conference on AI Engineering–Software Engineering for AI, Melbourne, Australia, 2023: 43–55. doi:  10.1109/CAIN58948.2023.00014. | 
| [73] | LIU Yongxin, WANG Jian, LI Jianqiang, et al. Class-incremental learning for wireless device identification in IoT[J]. IEEE Internet of Things Journal, 2021, 8(23): 17227–17235. doi:  10.1109/JIOT.2021.3078407. | 
| [74] | JIN Zhigang, ZHOU Junyi, LI Bing, et al. FL-IIDS: A novel federated learning-based incremental intrusion detection system[J]. Future Generation Computer Systems, 2024, 151: 57–70. doi:  10.1016/j.future.2023.09.019. | 
| [75] | JIN Hai, BAI Dongshan, YAO Dezhong, et al. Personalized edge intelligence via federated self-knowledge distillation[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(2): 567–580. doi:  10.1109/TPDS.2022.3225185. | 
| [76] | ZHANG Yu and YANG Qiang. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5586–5609. doi:  10.1109/TKDE.2021.3070203. | 
| [77] | WANG Bokun, YUAN Zhuoning, YING Yiming, et al. Memory-based optimization methods for model-agnostic meta-learning and personalized federated learning[J]. The Journal of Machine Learning Research, 2023, 24(1): 145. | 
| [78] | RAO Bosen, ZHANG Jiale, WU Di,    et al. Privacy inference attack and defense in centralized and federated learning: A comprehensive survey[J]. IEEE Transactions on Artificial Intelligence, 2024. doi:  10.1109/TAI.2024.3363670. | 
| [79] | ZHAO Bin, FAN Kai, YANG Kan, et al. Anonymous and Privacy-Preserving Federated Learning With Industrial Big Data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6314-6323. doi:  10.1109/TII.2021.3052183. | 
| [80] | NGUYEN V L, LIN P C, CHENG Bochao, et al. Security and privacy for 6G: A survey on prospective technologies and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2384–2428. doi:  10.1109/COMST.2021.3108618. | 
| [81] | KADHE S, RAJARAMAN N, KOYLUOGLU O O,    et al. FastSecAgg: Scalable secure aggregation for privacy-preserving federated learning[J]. arXiv preprint arXiv: 2009.11248, 2020. | 
| [82] | EL OUADRHIRI A and ABDELHADI A. Differential privacy for deep and federated learning: A survey[J]. IEEE Access, 2022, 10: 22359–22380. doi:  10.1109/ACCESS.2022.3151670. | 
| [83] | HARDY S, HENECKA W, IVEY-LAW H,    et al. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[J]. arXiv preprint arXiv: 1711.10677, 2017. | 
| [84] | ZHAO Ping, CAO Zhikui, JIANG Jin, et al. Practical private aggregation in federated learning against inference attack[J]. IEEE Internet of Things Journal, 2023, 10(1): 318–329. doi:  10.1109/JIOT.2022.3201231. | 
| [85] | REN Chao, YAN Rudai, XU Minrui, et al. QFDSA: A quantum-secured federated learning system for smart grid dynamic security assessment[J]. IEEE Internet of Things Journal, 2024, 11(5): 8414–8426. doi:  10.1109/JIOT.2023.3321793. | 
| [86] | WANG Xiaoding, GARG S, LIN Hui, et al. Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning[J]. IEEE Internet of Things Journal, 2022, 9(10): 7110–7119. doi:  10.1109/JIOT.2021.3074382. | 
| [87] | XIONG Hu, WU Yan, JIN Chuanjie, et al. Efficient and privacy-preserving authentication protocol for heterogeneous systems in IIoT[J]. IEEE Internet of Things Journal, 2020, 7(12): 11713–11724. doi:  10.1109/JIOT.2020.2999510. | 
| [88] | WU Tianyu, HE Shizhu, LIU Jingping, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122–1136. doi:  10.1109/JAS.2023.123618. | 
| [89] | SUN Yu, WANG Shuohuan, FENG Shikun,    et al. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation[J]. arXiv preprint arXiv: 2107.02137, 2021. | 
| [90] | ZHOU Ce, LI Qian, LI Chen,    et al. A comprehensive survey on pretrained foundation models: A history from BERT to ChatGPT[J]. International Journal of Machine Learning and Cybernetics, 2024. | 
| [91] | KASNECI E, SESSLER K, KÜCHEMANN S, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274. doi:  10.1016/j.lindif.2023.102274. | 
| [92] | YANG Hanqing, SIEW M, and JOE-WONG C. An LLM-based digital twin for optimizing human-in-the loop systems[C]. 2024 IEEE International Workshop on Foundation Models for Cyber-Physical Systems & Internet of Things, Hong Kong, China, 2024. doi:  10.1109/FMSys62467.2024.00009. | 
| [93] | CHEN Jiayuan, YI Changyan, DU Hongyang, et al. A revolution of personalized healthcare: Enabling human digital twin with mobile AIGC[J]. IEEE Network, 2024, 38(6): 234–242. doi:  10.1109/MNET.2024.3366560. | 
| [94] | CHEN Xuehan, LUO Linfeng, TANG Fengxiao, et al. AIGC-based evolvable digital twin networks: A road to the intelligent metaverse[J]. IEEE Network, 2024, 38(6): 370–379. doi:  10.1109/MNET.2024.3411008. | 
| [95] | WU Xingjiao, XIAO Luwei, SUN Yixuan, et al. A survey of human-in-the-loop for machine learning[J]. Future Generation Computer Systems, 2022, 135: 364–381. doi:  10.1016/j.future.2022.05.014. | 
| [96] | TURNER C J, MA Ruidong, CHEN Jingyu, et al. Human in the loop: Industry 4.0 technologies and scenarios for worker mediation of automated manufacturing[J]. IEEE Access, 2021, 9: 103950–103966. doi:  10.1109/ACCESS.2021.3099311. | 
| [97] | HIRAI R, SAITO Y, and SARUWATARI H. Federated learning for human-in-the-loop many-to-many voice conversion[C]. The 12th ISCA Speech Synthesis Workshop, Grenoble, France, 2023. | 
| [98] | WU Wen, LI Mushu, QU Kaige, et al. Split learning over wireless networks: Parallel design and resource management[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(4): 1051–1066. doi:  10.1109/JSAC.2023.3242704. | 
| [99] | HAFI H, BRIK B, FRANGOUDIS P A, et al. Split federated learning for 6G enabled-networks: Requirements, challenges, and future directions[J]. IEEE Access, 2024, 12: 9890–9930. doi:  10.1109/ACCESS.2024.3351600. | 
| [100] | THAPA C, CHAMIKARA M A P, and CAMTEPE S A. Advancements of federated learning towards privacy preservation: From federated learning to split learning[M]. UR REHMAN M H and GABER M M. Federated Learning Systems: Towards Next-Generation AI. Cham: Springer, 2021: 79–109. doi:  10.1007/978-3-030-70604-3_4. | 
| [101] | LI Weikang, LU Sirui, and DENG Dongling. Quantum federated learning through blind quantum computing[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(10): 100312. doi:  10.1007/s11433-021-1753-3. | 
| [102] | CHEN S Y C and YOO S. Federated quantum machine learning[J]. Entropy, 2021, 23(4): 460. doi:  10.3390/e23040460. | 
| [103] | YUN W J, KIM J P, JUNG S,    et al. Slimmable quantum federated learning[J]. arXiv preprint arXiv: 2207.10221, 2022. | 
| [104] | XIA Qi and LI Qun. QuantumFed: A federated learning framework for collaborative quantum training[C]. 2021 IEEE Global Communications Conference, Madrid, Spain, 2021: 1–6. doi:  10.1109/GLOBECOM46510.2021.9685012. | 
| [105] | ŞAHIN A and YANG Rui. A Survey on over-the-air computation[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 1877–1908. doi:  10.1109/COMST.2023.3264649. | 
| [106] | ZHANG Deyou, XIAO Ming, PANG Zhibo,    et al. Broadband over-the-air computation for federated learning in industrial IoT[C]. The 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 2022: 1–6. doi:  10.1109/IECON49645.2022.9968873. | 
| [107] | YANG Kai, JIANG Tao, SHI Yuanming, et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2022–2035. doi:  10.1109/TWC.2019.2961673. | 
| [108] | RATHI N, CHAKRABORTY I, KOSTA A, et al. Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware[J]. ACM Computing Surveys, 2023, 55(12): 243. doi:  10.1145/3571155. | 
| [109] | NUNES J D, CARVALHO M, CARNEIRO D, et al. Spiking neural networks: A survey[J]. IEEE Access, 2022, 10: 60738–60764. doi:  10.1109/ACCESS.2022.3179968. | 
| [110] | SKATCHKOVSKY N, JANG H, and SIMEONE O. Federated neuromorphic learning of spiking neural networks for low-power edge intelligence[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 8524–8528. doi:  10.1109/ICASSP40776.2020.9053861. | 
| [111] | WANG Huan, LI Yanfu, and GRYLLIAS K. Brain-inspired spiking neural networks for industrial fault diagnosis: A survey, challenges, and opportunities[J]. arXiv preprint arXiv: 2401.02429, 2023. | 
| [112] | ZHU Zhengyu, LI Zheng, CHU Zheng, et al. Intelligent reflecting surface-assisted wireless powered heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9881–9892. doi:  10.1109/TWC.2023.3274220. | 
| [113] | ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Robust beamforming design for IRS-aided secure SWIPT terahertz systems with non-linear EH model[J]. IEEE Wireless Communications Letters, 2022, 11(4): 746–750. doi:  10.1109/LWC.2022.3142098. | 
| [114] | 王平, 杨志伟, 李贺举. 智能反射面赋能的联邦边缘学习及其在车联网中的应用[J]. 通信学报, 2023, 44(10): 46–57. doi:  10.11959/j.issn.1000-436x.2023192. WANG Ping, YANG Zhiwei, and LI Heju. Federated edge learning with reconfigurable intelligent surface and its application in internet of vehicles[J]. Journal on Communications, 2023, 44(10): 46–57. doi:  10.11959/j.issn.1000-436x.2023192. | 
| [115] | ZHENG Jie, ZHANG Haijun, KANG Jiawen, et al. Covert federated learning via intelligent reflecting surfaces[J]. IEEE Transactions on Communications, 2023, 71(8): 4591–4604. doi:  10.1109/TCOMM.2023.3281880. | 
| [116] | ZHANG Yutong, DI Boya, ZHANG Hongliang, et al. Meta-wall: Intelligent omni-surfaces aided multi-cell MIMO communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7026–7039. doi:  10.1109/TWC.2022.3154041. | 
| [117] | MAHMOOD A, BELTRAMELLI L, ABEDIN S F, et al. Industrial IoT in 5G-and-beyond networks: Vision, architecture, and design trends[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6): 4122–4137. doi:  10.1109/TII.2021.3115697. | 
| [118] | ELHOUSHY S, IBRAHIM M, and HAMOUDA W. Cell-free massive MIMO: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 492–523. doi:  10.1109/COMST.2021.3123267. | 
| [119] | ZHAO Chen, GAO Zhipeng, WANG Qian, et al. AFL: An adaptively federated multitask learning for model sharing in industrial IoT[J]. IEEE Internet of Things Journal, 2022, 9(18): 17080–17088. doi:  10.1109/JIOT.2021.3125989. | 
| [120] | VU T T, NGO D T, TRAN N H, et al. Cell-free massive MIMO for wireless federated learning[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6377–6392. doi:  10.1109/TWC.2020.3002988. | 
