Citation: | LIU Miao, XIA Yuhong, ZHAO Haitao, GUO Liang, SHI Zheng, ZHU Hongbo. Federated Learning Technologies for 6G Industrial Internet of Things: From Requirements, Vision to Challenges, Opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4335-4353. doi: 10.11999/JEIT240574 |
[1] |
MUMTAZ S, BO A, AL-DULAIMI A, et al. Guest editorial 5G and beyond mobile technologies and applications for industrial IoT (IIoT)[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2588–2591. doi: 10.1109/TII.2018.2823311.
|
[2] |
LU Yang and ZHENG Xianrong. 6G: A survey on technologies, scenarios, challenges, and the related issues[J]. Journal of Industrial Information Integration, 2020, 19: 100158. doi: 10.1016/j.jii.2020.100158.
|
[3] |
GUI Guan, LIU Miao, TANG Fengxiao, et al. 6G: Opening new horizons for integration of comfort, security, and intelligence[J]. IEEE Wireless Communications, 2020, 27(5): 126–132. doi: 10.1109/MWC.001.1900516.
|
[4] |
LETAIEF K B, CHEN Wei, SHI Yuanming, et al. The roadmap to 6G: AI empowered wireless networks[J]. IEEE Communications Magazine, 2019, 57(8): 84–90. doi: 10.1109/MCOM.2019.1900271.
|
[5] |
AMBIKA P. Machine learning and deep learning algorithms on the Industrial Internet of Things (IIoT)[J]. Advances in Computers, 2020, 117(1): 321–338. doi: 10.1016/BS.ADCOM.2019.10.007.
|
[6] |
QVIST-SØRENSEN P. Applying IIoT and AI–Opportunities, requirements and challenges for industrial machine and equipment manufacturers to expand their services[J]. Central European Business Review, 2020, 9(2): 46–77. doi: 10.18267/j.cebr.234.
|
[7] |
MAO Yuyi, YU Xianghao, HUANG Kaibin, et al. Green edge AI: A contemporary survey[J]. Proceedings of the IEEE, 2024, 112(7): 880–911. doi: 10.1109/JPROC.2024.3437365.
|
[8] |
ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1323.
|
[9] |
ZHOU Tailin, ZHANG Jun, and TSANG D H K. FedFA: Federated learning with feature anchors to align features and classifiers for heterogeneous data[J]. IEEE Transactions on Mobile Computing, 2024, 23(6): 6731–6742. doi: 10.1109/TMC.2023.3325366.
|
[10] |
范绍帅, 吴剑波, 田辉. 面向能量受限工业物联网设备的联邦学习资源管理[J]. 通信学报, 2022, 43(8): 65–77. doi: 10.11959/j.issn.1000−436x.2022126.
FAN Shaoshuai, WU Jianbo, and TIAN Hui. Federated learning resource management for energy-constrained industrial IoT devices[J]. Journal on Communications, 2022, 43(8): 65–77. doi: 10.11959/j.issn.1000−436x.2022126.
|
[11] |
BASU D, GHOSH U, and DATTA R. 6G for industry 5.0 and smart CPS: A journey from challenging hindrance to opportunistic future[C]. 2022 IEEE Silchar Subsection Conference, Silchar, India, 2022: 1–6. doi: 10.1109/SILCON55242.2022.10028927.
|
[12] |
NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for industrial internet of things in future industries[J]. IEEE Wireless Communications, 2021, 28(6): 192–199. doi: 10.1109/MWC.001.2100102.
|
[13] |
BOOBALAN P, RAMU S P, PHAM Q V, et al. Fusion of federated learning and industrial internet of things: A survey[J]. Computer Networks, 2022, 212: 109048. doi: 10.1016/j.comnet.2022.109048.
|
[14] |
BERGHOUT T, BENBOUZID M, BENTRCIA T, et al. Federated learning for condition monitoring of industrial processes: A review on fault diagnosis methods, challenges, and prospects[J]. Electronics, 2022, 12(1): 158. doi: 10.3390/electronics12010158.
|
[15] |
LIU Yi, YUAN Xingliang, XIONG Zehui, et al. Federated learning for 6G communications: Challenges, methods, and future directions[J]. China Communications, 2020, 17(9): 105–118. doi: 10.23919/JCC.2020.09.009.
|
[16] |
GHILDIYAL Y, SINGH R, ALKHAYYAT A, et al. An imperative role of 6G communication with perspective of industry 4.0: Challenges and research directions[J]. Sustainable Energy Technologies and Assessments, 2023, 56: 103047. doi: 10.1016/j.seta.2023.103047.
|
[17] |
ZHU Guangxu, LYU Zhonghao, JIAO Xiang, et al. Pushing AI to wireless network edge: An overview on integrated sensing, communication, and computation towards 6G[J]. Science China Information Sciences, 2023, 66(3): 130301. doi: 10.1007/s11432-022-3652-2.
|
[18] |
GONG Yongkang, YAO Haipeng, WANG Jingjing, et al. Edge intelligence-driven joint offloading and resource allocation for future 6G industrial internet of things[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(6): 5644–5655. doi 10.1109/TNSE.2022.3141728.
|
[19] |
HIESSL T, SCHALL D, KEMNITZ J, et al. Industrial federated learning–requirements and system design[C]. The International Conference on Practical Applications of Agents and Multi-Agent Systems, L’Aquila, Italy, 2020: 42–53. doi: 10.1007/978-3-030-51999-5_4.
|
[20] |
MAKKAR A, KIM T W, SINGH A K, et al. SecureIIoT environment: Federated learning empowered approach for securing IIoT from data breach[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6406–6414. doi: 10.1109/TII.2022.3149902.
|
[21] |
YE Mang, FANG Xiuwen, DU Bo, et al. Heterogeneous federated learning: State-of-the-art and research challenges[J]. ACM Computing Surveys, 2024, 56(3): 79. doi: 10.1145/3625558.
|
[22] |
TANG Fengxiao, CHEN Xuehan, RODRIGUES T K, et al. Survey on Digital Twin Edge Networks (DITEN) toward 6G[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1360–1381. doi: 10.1109/OJCOMS.2022.3197811.
|
[23] |
LIN Xingqin, KUNDU L, DICK C, et al. 6G digital twin networks: From theory to practice[J]. IEEE Communications Magazine, 2023, 61(11): 72–78. doi: 10.1109/MCOM.001.2200830.
|
[24] |
LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Communication-efficient federated learning for digital twin edge networks in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5709–5718. doi: 10.1109/tii.2020.3010798.
|
[25] |
LU Yunlong, HUANG Xiaohong, ZHANG Ke, et al. Communication-efficient federated learning and permissioned blockchain for digital twin edge networks[J]. IEEE Internet of Things Journal, 2021, 8(4): 2276–2288. doi: 10.1109/JIOT.2020.3015772.
|
[26] |
PRAHARAJ L, GUPTA M, and GUPTA D. Hierarchical federated transfer learning and digital twin enhanced secure cooperative smart farming[C]. 2023 IEEE International Conference on Big Data, Sorrento, Italy, 2023: 3304–3313. doi: 10.1109/BigData59044.2023.10386345.
|
[27] |
TAO Fei, ZHANG He, and ZHANG Chenyuan. Advancements and challenges of digital twins in industry[J]. Nature Computational Science, 2024, 4(3): 169–177. doi: 10.1038/s43588-024-00603-w.
|
[28] |
RAMU S P, BOOPALAN P, PHAM Q V, et al. Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions[J]. Sustainable Cities and Society, 2022, 79: 103663. doi: 10.1016/j.scs.2021.103663.
|
[29] |
GUO Jingjing, LIU Zhiquan, TIAN Siyi, et al. TFL-DT: A trust evaluation scheme for federated learning in digital twin for mobile networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(11): 3548–3560. doi: 10.1109/JSAC.2023.3310094.
|
[30] |
HE Yejun, YANG Mengna, ZHOU He, et al. Computation offloading and resource allocation based on DT-MEC-assisted federated learning framework[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(6): 1707–1720. doi: 10.1109/TCCN.2023.3298926.
|
[31] |
QADIR Z, LE K N, SAEED N, et al. Towards 6G Internet of Things: Recent advances, use cases, and open challenges[J]. ICT Express, 2023, 9(3): 296–312. doi: 10.1016/j.icte.2022.06.006.
|
[32] |
QUY V K, NGUYEN D C, VAN ANH D, et al. Federated learning for green and sustainable 6G IIoT applications[J]. Internet of Things, 2024, 25: 101061. doi: 10.1016/j.iot.2024.101061.
|
[33] |
YANG Wei, XIANG Wei, YANG Yuan, et al. Optimizing Federated Learning With Deep Reinforcement Learning for Digital Twin Empowered Industrial IoT [J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1884-1893. doi: 10.1109/TII.2022.3183465.
|
[34] |
FARAHANI B and MONSEFI A K. Smart and collaborative industrial IoT: A federated learning and data space approach[J]. Digital Communications and Networks, 2023, 9(2): 436–447. doi: 10.1016/j.dcan.2023.01.022.
|
[35] |
CHEN Jianrui, WANG Jingjing, JIANG Chunxiao, et al. Trustworthy semantic communications for the metaverse relying on federated learning[J]. IEEE Wireless Communications, 2023, 30(4): 18–25. doi: 10.1109/MWC.001.2200587.
|
[36] |
OOI M P L, SOHAIL S, HUANG V G, et al. Measurement and applications: Exploring the challenges and opportunities of hierarchical federated learning in sensor applications[J]. IEEE Instrumentation & Measurement Magazine, 2023, 26(9): 21–31. doi: 10.1109/MIM.2023.10328671.
|
[37] |
ZHU Juncen, CAO Jiannong, SAXENA D, et al. Blockchain-empowered federated learning: Challenges, solutions, and future directions[J]. ACM Computing Surveys, 2023, 55(11): 240. doi: 10.1145/3570953.
|
[38] |
LIU Shimin, LU Yuqian, SHEN Xingwang, et al. A digital thread-driven distributed collaboration mechanism between digital twin manufacturing units[J]. Journal of Manufacturing Systems, 2023, 68: 145–159. doi: 10.1016/j.jmsy.2023.02.014.
|
[39] |
CRONIN C, CONWAY A, and WALSH J. Flexible manufacturing systems using IIoT in the automotive sector[J]. Procedia Manufacturing, 2019, 38: 1652–1659. doi: 10.1016/j.promfg.2020.01.119.
|
[40] |
TSAI Y H, CHANG D M, and HSU T C. Edge computing based on federated learning for machine monitoring[J]. Applied Sciences, 2022, 12(10): 5178. doi: 10.3390/app12105178.
|
[41] |
GUO Sheng, LI Zengxiang, LIU Hui, et al. Personalized federated learning for multi-task fault diagnosis of rotating machinery[J]. arXiv preprint arXiv: 2211.09406, 2022.
|
[42] |
CHEN Baotong, WAN Jiafu, LAN Yanting, et al. Improving cognitive ability of edge intelligent IIoT through machine learning[J]. IEEE Network, 2019, 33(5): 61–67. doi: 10.1109/MNET.001.1800505.
|
[43] |
GUO Qi, TANG Fengxiao, and KATO N. Federated reinforcement learning-based resource allocation for D2D-aided digital twin edge networks in 6G industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 7228–7236. doi: 10.1109/TII.2022.3227655.
|
[44] |
SUN Fanglei and DIAO Zhifeng. Federated learning and blockchain-enabled intelligent manufacturing for sustainable energy production in industry 4.0[J]. Processes, 2023, 11(5): 1482. doi: 10.3390/pr11051482.
|
[45] |
TARIQ M, ALI M, NAEEM F, et al. Vulnerability assessment of 6G-enabled smart grid cyber–physical systems[J]. IEEE Internet of Things Journal, 2021, 8(7): 5468–5475. doi: 10.1109/JIOT.2020.3042090.
|
[46] |
BOUZINIS P S, DIAMANTOULAKIS P D, and KARAGIANNIDIS G K. Wireless federated learning (WFL) for 6G networks Part I: Research challenges and future trends[J]. IEEE Communications Letters, 2022, 26(1): 3–7. doi: 10.1109/LCOMM.2021.3121071.
|
[47] |
CHAUDHARY R, AUJLA G S, GARG S, et al. SDN-enabled multi-attribute-based secure communication for smart grid in IIoT environment[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2629–2640. doi: 10.1109/TII.2018.2789442.
|
[48] |
WEN Mi, XIE Rong, LU Kejie, et al. FedDetect: A novel privacy-preserving federated learning framework for energy theft detection in smart grid[J]. IEEE Internet of Things Journal, 2022, 9(8): 6069–6080. doi: 10.1109/JIOT.2021.3110784.
|
[49] |
XIAO Lijun, HAN Dezhi, YANG Ce, et al. TS-DP: An efficient data processing algorithm for distribution digital twin grid for industry 5.0[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 1983–1994. doi: 10.1109/TCE.2023.3332099.
|
[50] |
PÉREZ S, PÉREZ J, ARROBA P, et al. Predictive GPU-based ADAS management in energy-conscious smart cities[C]. 2019 IEEE International Smart Cities Conference, Casablanca, Morocco, 2019: 349–354. doi: 10.1109/ISC246665.2019.9071685.
|
[51] |
TAÏK A and CHERKAOUI S. Electrical load forecasting using edge computing and federated learning[C]. The IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148937.
|
[52] |
CAO Hui, LIU Shubo, ZHAO Renfang, et al. IFed: A novel federated learning framework for local differential privacy in power internet of things[J]. International Journal of Distributed Sensor Networks, 2020, 16(5): 1550147720919698. doi: 10.1177/1550147720919698.
|
[53] |
BOUACHIR O, ALOQAILY M, ÖZKASAP Ö, et al. FederatedGrids: Federated learning and blockchain-assisted P2P energy sharing[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 424–436. doi: 10.1109/TGCN.2022.3140978.
|
[54] |
SHAHID O, POURIYEH S, PARIZI R M, et al. Communication efficiency in federated learning: Achievements and challenges[J]. arXiv preprint arXiv: 2107.10996, 2021.
|
[55] |
SHLEZINGER N, CHEN Mingzhe, ELDAR Y C, et al. Federated learning with quantization constraints[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 8851–8855. doi: 10.1109/ICASSP40776.2020.9054168.
|
[56] |
HUANG Anbu, CHEN Yuanyuan, LIU Yang, et al. RPN: A residual pooling network for efficient federated learning[C]. Proceedings of the 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 2020: 1223–1229.
|
[57] |
IMTEAJ A, THAKKER U, WANG Shiqiang, et al. A survey on federated learning for resource-constrained IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(1): 1–24. doi: 10.1109/JIOT.2021.3095077.
|
[58] |
JIANG Yuang, WANG Shiqiang, VALLS V, et al. Model pruning enables efficient federated learning on edge devices[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10374–10386. doi: 10.1109/TNNLS.2022.3166101.
|
[59] |
WU Chuhan, WU Fengzhao, LYU Lingjuan, et al. Communication-efficient federated learning via knowledge distillation[J]. Nature Communications, 2022, 13(1): 2032. doi: 10.1038/s41467-022-29763-x.
|
[60] |
XIA Dan, JIANG Chun, WAN Jiafu, et al. Heterogeneous network access and fusion in smart factory: A survey[J]. ACM Computing Surveys, 2023, 55(6): 113. doi: 10.1145/3530815.
|
[61] |
PRAKASH S and AVESTIMEHR A S. Mitigating byzantine attacks in federated learning[J]. arXiv preprint arXiv: 2010.07541, 2020.
|
[62] |
XU Chenhao, QU Youyang, XIANG Yong, et al. Asynchronous federated learning on heterogeneous devices: A survey[J]. Computer Science Review, 2023, 50: 100595. doi: 10.1016/j.cosrev.2023.100595.
|
[63] |
SUN Wen, LEI Shiyu, WANG Lu, et al. Adaptive federated learning and digital twin for industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5605–5614. doi: 10.1109/TII.2020.3034674.
|
[64] |
ABDELMONIEM A M, SAHU A N, CANINI M, et al. REFL: Resource-efficient federated learning[C]. The Eighteenth European Conference on Computer Systems, Rome Italy, 2023: 215–232. doi: 10.1145/3552326.3567485.
|
[65] |
CAO Mei, ZHANG Yujie, MA Zezhong, et al. C2S: Class-aware client selection for effective aggregation in federated learning[J]. High-Confidence Computing, 2022, 2(3): 100068. doi: 10.1016/j.hcc.2022.100068.
|
[66] |
TAN A Z, HAN Yu, CUI Lizhen, et al. Towards personalized federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 9587–9603. doi: 10.1109/TNNLS.2022.3160699.
|
[67] |
DENG Yongheng, CHEN Weining, REN Ju, et al. TailorFL: Dual-personalized federated learning under system and data heterogeneity[C]. The 20th ACM Conference on Embedded Networked Sensor Systems, Boston, USA, 2022: 592–606. doi: 10.1145/3560905.3568503.
|
[68] |
REN Lei, LI Yingjie, WANG Xiaokang, et al. An ABGE-aided manufacturing knowledge graph construction approach for heterogeneous IIoT data integration[J]. International Journal of Production Research, 2023, 61(12): 4102–4116. doi: 10.1080/00207543.2022.2042416.
|
[69] |
ZHANG Kai, WANG Yu, WANG Hongyi, et al. Efficient federated learning on knowledge graphs via privacy-preserving relation embedding aggregation[C]. The Findings of the Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2022: 613–621. doi: 10.18653/v1/2022.findings-emnlp.43.
|
[70] |
ZHU Xiangrong, LI Guangyao, and HU Wei. Heterogeneous federated knowledge graph embedding learning and unlearning[C]. The ACM Web Conference 2023, Austin, USA, 2023: 2444–2454. doi: 10.1145/3543507.3583305.
|
[71] |
EK K, PORTET F, LALANDA P, et al. A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison[C]. 2021 IEEE International Conference on Pervasive Computing and Communications, Kassel, Germany, 2021: 1–10. doi: 10.1109/PERCOM50583.2021.9439129.
|
[72] |
SEN S, NIELSEN S M, HUSOM E J, et al. Replay-driven continual learning for the industrial internet of things[C]. The 2023 IEEE/ACM 2nd International Conference on AI Engineering–Software Engineering for AI, Melbourne, Australia, 2023: 43–55. doi: 10.1109/CAIN58948.2023.00014.
|
[73] |
LIU Yongxin, WANG Jian, LI Jianqiang, et al. Class-incremental learning for wireless device identification in IoT[J]. IEEE Internet of Things Journal, 2021, 8(23): 17227–17235. doi: 10.1109/JIOT.2021.3078407.
|
[74] |
JIN Zhigang, ZHOU Junyi, LI Bing, et al. FL-IIDS: A novel federated learning-based incremental intrusion detection system[J]. Future Generation Computer Systems, 2024, 151: 57–70. doi: 10.1016/j.future.2023.09.019.
|
[75] |
JIN Hai, BAI Dongshan, YAO Dezhong, et al. Personalized edge intelligence via federated self-knowledge distillation[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(2): 567–580. doi: 10.1109/TPDS.2022.3225185.
|
[76] |
ZHANG Yu and YANG Qiang. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5586–5609. doi: 10.1109/TKDE.2021.3070203.
|
[77] |
WANG Bokun, YUAN Zhuoning, YING Yiming, et al. Memory-based optimization methods for model-agnostic meta-learning and personalized federated learning[J]. The Journal of Machine Learning Research, 2023, 24(1): 145.
|
[78] |
RAO Bosen, ZHANG Jiale, WU Di, et al. Privacy inference attack and defense in centralized and federated learning: A comprehensive survey[J]. IEEE Transactions on Artificial Intelligence, 2024. doi: 10.1109/TAI.2024.3363670.
|
[79] |
ZHAO Bin, FAN Kai, YANG Kan, et al. Anonymous and Privacy-Preserving Federated Learning With Industrial Big Data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6314-6323. doi: 10.1109/TII.2021.3052183.
|
[80] |
NGUYEN V L, LIN P C, CHENG Bochao, et al. Security and privacy for 6G: A survey on prospective technologies and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2384–2428. doi: 10.1109/COMST.2021.3108618.
|
[81] |
KADHE S, RAJARAMAN N, KOYLUOGLU O O, et al. FastSecAgg: Scalable secure aggregation for privacy-preserving federated learning[J]. arXiv preprint arXiv: 2009.11248, 2020.
|
[82] |
EL OUADRHIRI A and ABDELHADI A. Differential privacy for deep and federated learning: A survey[J]. IEEE Access, 2022, 10: 22359–22380. doi: 10.1109/ACCESS.2022.3151670.
|
[83] |
HARDY S, HENECKA W, IVEY-LAW H, et al. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[J]. arXiv preprint arXiv: 1711.10677, 2017.
|
[84] |
ZHAO Ping, CAO Zhikui, JIANG Jin, et al. Practical private aggregation in federated learning against inference attack[J]. IEEE Internet of Things Journal, 2023, 10(1): 318–329. doi: 10.1109/JIOT.2022.3201231.
|
[85] |
REN Chao, YAN Rudai, XU Minrui, et al. QFDSA: A quantum-secured federated learning system for smart grid dynamic security assessment[J]. IEEE Internet of Things Journal, 2024, 11(5): 8414–8426. doi: 10.1109/JIOT.2023.3321793.
|
[86] |
WANG Xiaoding, GARG S, LIN Hui, et al. Toward accurate anomaly detection in industrial internet of things using hierarchical federated learning[J]. IEEE Internet of Things Journal, 2022, 9(10): 7110–7119. doi: 10.1109/JIOT.2021.3074382.
|
[87] |
XIONG Hu, WU Yan, JIN Chuanjie, et al. Efficient and privacy-preserving authentication protocol for heterogeneous systems in IIoT[J]. IEEE Internet of Things Journal, 2020, 7(12): 11713–11724. doi: 10.1109/JIOT.2020.2999510.
|
[88] |
WU Tianyu, HE Shizhu, LIU Jingping, et al. A brief overview of ChatGPT: The history, status quo and potential future development[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(5): 1122–1136. doi: 10.1109/JAS.2023.123618.
|
[89] |
SUN Yu, WANG Shuohuan, FENG Shikun, et al. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and generation[J]. arXiv preprint arXiv: 2107.02137, 2021.
|
[90] |
ZHOU Ce, LI Qian, LI Chen, et al. A comprehensive survey on pretrained foundation models: A history from BERT to ChatGPT[J]. International Journal of Machine Learning and Cybernetics, 2024.
|
[91] |
KASNECI E, SESSLER K, KÜCHEMANN S, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274. doi: 10.1016/j.lindif.2023.102274.
|
[92] |
YANG Hanqing, SIEW M, and JOE-WONG C. An LLM-based digital twin for optimizing human-in-the loop systems[C]. 2024 IEEE International Workshop on Foundation Models for Cyber-Physical Systems & Internet of Things, Hong Kong, China, 2024. doi: 10.1109/FMSys62467.2024.00009.
|
[93] |
CHEN Jiayuan, YI Changyan, DU Hongyang, et al. A revolution of personalized healthcare: Enabling human digital twin with mobile AIGC[J]. IEEE Network, 2024, 38(6): 234–242. doi: 10.1109/MNET.2024.3366560.
|
[94] |
CHEN Xuehan, LUO Linfeng, TANG Fengxiao, et al. AIGC-based evolvable digital twin networks: A road to the intelligent metaverse[J]. IEEE Network, 2024, 38(6): 370–379. doi: 10.1109/MNET.2024.3411008.
|
[95] |
WU Xingjiao, XIAO Luwei, SUN Yixuan, et al. A survey of human-in-the-loop for machine learning[J]. Future Generation Computer Systems, 2022, 135: 364–381. doi: 10.1016/j.future.2022.05.014.
|
[96] |
TURNER C J, MA Ruidong, CHEN Jingyu, et al. Human in the loop: Industry 4.0 technologies and scenarios for worker mediation of automated manufacturing[J]. IEEE Access, 2021, 9: 103950–103966. doi: 10.1109/ACCESS.2021.3099311.
|
[97] |
HIRAI R, SAITO Y, and SARUWATARI H. Federated learning for human-in-the-loop many-to-many voice conversion[C]. The 12th ISCA Speech Synthesis Workshop, Grenoble, France, 2023.
|
[98] |
WU Wen, LI Mushu, QU Kaige, et al. Split learning over wireless networks: Parallel design and resource management[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(4): 1051–1066. doi: 10.1109/JSAC.2023.3242704.
|
[99] |
HAFI H, BRIK B, FRANGOUDIS P A, et al. Split federated learning for 6G enabled-networks: Requirements, challenges, and future directions[J]. IEEE Access, 2024, 12: 9890–9930. doi: 10.1109/ACCESS.2024.3351600.
|
[100] |
THAPA C, CHAMIKARA M A P, and CAMTEPE S A. Advancements of federated learning towards privacy preservation: From federated learning to split learning[M]. UR REHMAN M H and GABER M M. Federated Learning Systems: Towards Next-Generation AI. Cham: Springer, 2021: 79–109. doi: 10.1007/978-3-030-70604-3_4.
|
[101] |
LI Weikang, LU Sirui, and DENG Dongling. Quantum federated learning through blind quantum computing[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(10): 100312. doi: 10.1007/s11433-021-1753-3.
|
[102] |
CHEN S Y C and YOO S. Federated quantum machine learning[J]. Entropy, 2021, 23(4): 460. doi: 10.3390/e23040460.
|
[103] |
YUN W J, KIM J P, JUNG S, et al. Slimmable quantum federated learning[J]. arXiv preprint arXiv: 2207.10221, 2022.
|
[104] |
XIA Qi and LI Qun. QuantumFed: A federated learning framework for collaborative quantum training[C]. 2021 IEEE Global Communications Conference, Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685012.
|
[105] |
ŞAHIN A and YANG Rui. A Survey on over-the-air computation[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 1877–1908. doi: 10.1109/COMST.2023.3264649.
|
[106] |
ZHANG Deyou, XIAO Ming, PANG Zhibo, et al. Broadband over-the-air computation for federated learning in industrial IoT[C]. The 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 2022: 1–6. doi: 10.1109/IECON49645.2022.9968873.
|
[107] |
YANG Kai, JIANG Tao, SHI Yuanming, et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2022–2035. doi: 10.1109/TWC.2019.2961673.
|
[108] |
RATHI N, CHAKRABORTY I, KOSTA A, et al. Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware[J]. ACM Computing Surveys, 2023, 55(12): 243. doi: 10.1145/3571155.
|
[109] |
NUNES J D, CARVALHO M, CARNEIRO D, et al. Spiking neural networks: A survey[J]. IEEE Access, 2022, 10: 60738–60764. doi: 10.1109/ACCESS.2022.3179968.
|
[110] |
SKATCHKOVSKY N, JANG H, and SIMEONE O. Federated neuromorphic learning of spiking neural networks for low-power edge intelligence[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 8524–8528. doi: 10.1109/ICASSP40776.2020.9053861.
|
[111] |
WANG Huan, LI Yanfu, and GRYLLIAS K. Brain-inspired spiking neural networks for industrial fault diagnosis: A survey, challenges, and opportunities[J]. arXiv preprint arXiv: 2401.02429, 2023.
|
[112] |
ZHU Zhengyu, LI Zheng, CHU Zheng, et al. Intelligent reflecting surface-assisted wireless powered heterogeneous networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9881–9892. doi: 10.1109/TWC.2023.3274220.
|
[113] |
ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Robust beamforming design for IRS-aided secure SWIPT terahertz systems with non-linear EH model[J]. IEEE Wireless Communications Letters, 2022, 11(4): 746–750. doi: 10.1109/LWC.2022.3142098.
|
[114] |
王平, 杨志伟, 李贺举. 智能反射面赋能的联邦边缘学习及其在车联网中的应用[J]. 通信学报, 2023, 44(10): 46–57. doi: 10.11959/j.issn.1000-436x.2023192.
WANG Ping, YANG Zhiwei, and LI Heju. Federated edge learning with reconfigurable intelligent surface and its application in internet of vehicles[J]. Journal on Communications, 2023, 44(10): 46–57. doi: 10.11959/j.issn.1000-436x.2023192.
|
[115] |
ZHENG Jie, ZHANG Haijun, KANG Jiawen, et al. Covert federated learning via intelligent reflecting surfaces[J]. IEEE Transactions on Communications, 2023, 71(8): 4591–4604. doi: 10.1109/TCOMM.2023.3281880.
|
[116] |
ZHANG Yutong, DI Boya, ZHANG Hongliang, et al. Meta-wall: Intelligent omni-surfaces aided multi-cell MIMO communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7026–7039. doi: 10.1109/TWC.2022.3154041.
|
[117] |
MAHMOOD A, BELTRAMELLI L, ABEDIN S F, et al. Industrial IoT in 5G-and-beyond networks: Vision, architecture, and design trends[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6): 4122–4137. doi: 10.1109/TII.2021.3115697.
|
[118] |
ELHOUSHY S, IBRAHIM M, and HAMOUDA W. Cell-free massive MIMO: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 492–523. doi: 10.1109/COMST.2021.3123267.
|
[119] |
ZHAO Chen, GAO Zhipeng, WANG Qian, et al. AFL: An adaptively federated multitask learning for model sharing in industrial IoT[J]. IEEE Internet of Things Journal, 2022, 9(18): 17080–17088. doi: 10.1109/JIOT.2021.3125989.
|
[120] |
VU T T, NGO D T, TRAN N H, et al. Cell-free massive MIMO for wireless federated learning[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6377–6392. doi: 10.1109/TWC.2020.3002988.
|