Advanced Search
Turn off MathJax
Article Contents
JIANG Hao, SHI Wangqi, ZHU Qiuming, SHU Feng, WANG Jiangzhou. Research on Channel Modeling and Characteristics Analysis for RIS-Enabled Near-Field Marine Communications Towards 6G[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240518
Citation: JIANG Hao, SHI Wangqi, ZHU Qiuming, SHU Feng, WANG Jiangzhou. Research on Channel Modeling and Characteristics Analysis for RIS-Enabled Near-Field Marine Communications Towards 6G[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240518

Research on Channel Modeling and Characteristics Analysis for RIS-Enabled Near-Field Marine Communications Towards 6G

doi: 10.11999/JEIT240518
Funds:  The National Natural Science Foundation of China (62471238, 62101275, 61771244, 62071234), 2021 Hainan Province Major Science and Technology Plan Project (ZDKJ2021022)
  • Received Date: 2024-06-25
  • Rev Recd Date: 2024-08-23
  • Available Online: 2024-08-30
  • Reconfigurable Intelligent Surfaces (RIS) is considered as one of the potential key technologies for 6G mobile communications, which offers advantages such as low cost, low energy consumption, and easy deployment. By integrating RIS technology into marine wireless channels, it has the capability to convert the unpredictable wireless transmission environment into a manageable one. However, current channel models are struggling to accurately depict the unique signal transmission mechanisms of RIS-enabled base station to ship channels in marine communication scenarios, resulting in challenges in achieving a balance between accuracy and complexity for channel characterization and theoretical establishment. Therefore, this paper develops a segmented channel modeling method for near-field RIS-enabled marine communications, and then proposed a multi-domain joint parameterized statistical channel model for RIS-enabled marine communications. This approach focus on addressing the technical bottleneck of existing RIS channel modeling methods that face difficulties in achieving a balance between accuracy and efficiency, ultimately facilitating the rapid development of the 6G mobile communication industry in China.
  • loading
  • [1]
    JIANG Wei, HAN Bin, HABIBI M A, et al. The road towards 6G: A comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2021, 2: 334–366. doi: 10.1109/OJCOMS.2021.3057679.
    [2]
    YOU Xiaohu, WANG Chengxiang, HUANG Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 110301. doi: 10.1007/s11432-020-2955-6.
    [3]
    何雨蓓. 6G海洋通信信道特性分析与建模[D]. [博士论文], 山东大学, 2023. doi: 10.27272/d.cnki.gshdu.2023.007461.

    HE Yubei. Channel characteristic analysis and channel modeling for 6G maritime communications[D]. [Ph. D. dissertation], Shandong University, 2023. doi: 10.27272/d.cnki.gshdu.2023.007461.
    [4]
    JIANG Hao, MUKHERJEE M, ZHOU Jie, et al. Channel modeling and characteristics for 6G wireless communications[J]. IEEE Network, 2021, 35(1): 296–303. doi: 10.1109/MNET.011.2000348.
    [5]
    孙华丽, 孟维晓, 张乃通. 空时频MIMO信道建模与实现[J]. 电子与信息学报, 2008, 30(9): 2279–2282. doi: 10.3724/SP.J.1146.2007.00209.

    SUN Huali, MENG Weixiao, and ZHANG Naitong. Modeling and implementation of space-time-frequency MIMO channel[J]. Journal of Electronics & Information Technology, 2008, 30(9): 2279–2282. doi: 10.3724/SP.J.1146.2007.00209.
    [6]
    陈天贝, 李娜, 陶小峰. 低开销智能反射面辅助无线通信研究综述[J]. 中兴通讯技术, 2023, 29(6): 29–38. doi: 10.12142/ZTETJ.202306006.

    CHEN Tianbei, LI Na, and TAO Xiaofeng. Survey on low-overhead reconfigurable intelligent surface assisted wireless communication[J]. ZTE Technology Journal, 2023, 29(6): 29–38. doi: 10.12142/ZTETJ.202306006.
    [7]
    李贵勇, 杜一舟, 王丹. 可重构智能表面辅助的多用户通信宽带信道估计[J]. 电子与信息学报, 2023, 45(7): 2443–2450. doi: 10.11999/JEIT220775.

    LI Guiyong, DU Yizhou, and WANG Dan. Wideband channel estimation for multiuser communication based on reconfigurable intelligent surface assisted[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2443–2450. doi: 10.11999/JEIT220775.
    [8]
    张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [9]
    BASAR E and YILDIRIM I. Reconfigurable intelligent surfaces for future wireless networks: A channel modeling perspective[J]. IEEE Wireless Communications, 2021, 28(3): 108–114. doi: 10.1109/MWC.001.2000338.
    [10]
    黄子轩, 姚刘嘉, 游昌盛. 超大规模智能反射面辅助的近场移动通信研究[J]. 无线电通信技术, 2024, 50(2): 263–268. doi: 10.3969/j.issn.1003-3114.2024.02.006.

    HUANG Zixuan, YAO Liujia, and YOU Changsheng. Research on extremely large-scale IRS assisted near-field mobile communications[J]. Radio Communications Technology, 2024, 50(2): 263–268. doi: 10.3969/j.issn.1003-3114.2024.02.006.
    [11]
    ZHANG Haiyang, SHLEZINGER N, GUIDI F, et al. 6G wireless communications: From far-field beam steering to near-field beam focusing[J]. IEEE Communications Magazine, 2023, 61(4): 72–77. doi: 10.1109/MCOM.001.2200259.
    [12]
    CUI Mingyao, WU Zidong, LU Yu, et al. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions[J]. IEEE Communications Magazine, 2023, 61(1): 40–46. doi: 10.1109/MCOM.004.2200136.
    [13]
    YUAN Jiwei, QIAN Hongbao, and WANG Donghai. Study on application of channel propagation model for maritime communication[C]. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, Dalian, China, 2022: 855–859. doi: 10.1109/IPEC54454.2022.9777553.
    [14]
    MA Zhangfeng, AI Bo, HE Ruisi, et al. Modeling and analysis of MIMO multipath channels with aerial intelligent reflecting surface[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 3027–3040. doi: 10.1109/JSAC.2022.3196112.
    [15]
    SUN Guiqi, HE Ruisi, MA Zhangfeng, et al. A 3D geometry-Based non-stationary MIMO channel model for RIS-assisted communications[C]. 2021 IEEE 94th Vehicular Technology Conference, Norman, OK, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625374.
    [16]
    SUN Yingzhuo, WANG Chengxiang, HUANG Jie, et al. A 3D non-stationary channel model for 6G wireless systems employing intelligent reflecting surfaces with practical phase shifts[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 496–510. doi: 10.1109/TCCN.2021.3075438.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (281) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return