Citation: | HE Lijun, JIA Ziye, LI Shiyin, WANG Yanting, WANG Li, LIU Lei. Design and Optimization of Task-driven Dynamic Scalable Network Architecture in Spatial Information Networks[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4409-4421. doi: 10.11999/JEIT240505 |
[1] |
HU Fei, YANG Chaowei, SCHNASE J L, et al. Climatespark: An in-memory distributed computing framework for big climate data analytics[J]. Computers & Geosciences, 2018, 115: 154–166. doi: 10.1016/j.cageo.2018.03.011.
|
[2] |
LI Deren.On the space and sky information real-time intelligent service system with deep integration of military and civilian[J]. Civil-Military Integration on Cyberspace, 2018(12):12-15.
LI Deren.On the space and sky information real-time intelligent service system with deep integration of military and civilian[J]. Civil-Military Integration on Cyberspace, 2018(12):12-15.
|
[3] |
张威, 张更新, 苟亮. 空间信息网络中的星座设计方法研究[J]. 中兴通讯技术, 2016, 22(4): 19–23,45. doi: 10.3969/j.issn.1009-6868.2016.04.004.
ZHANG Wei, ZHANG Gengxin, and GOU Liang. Satellite constellation design in space information network[J]. ZTE Technology Journal, 2016, 22(4): 19–23,45. doi: 10.3969/j.issn.1009-6868.2016.04.004.
|
[4] |
ZHANG Wei, ZHANG Gengxin, XIE Zhidong, et al. A hierarchical autonomous system based space information network architecture and topology control[J]. Journal of Communications and Information Networks, 2016, 1(3): 77–89. doi: 10.11959/j.issn.2096-1081.2016.017.
|
[5] |
SUN Jiayu, QI Weijing, SONG Qingyang, et al. A new architecture for space information networks based on an MEO constellation optical backbone network[C]. Asia Communications and Photonics Conference 2017, Guangzhou, China, 2017: Su3C. 3. doi: 10.1364/ACPC.2017.Su3C.3.
|
[6] |
MA Ting, QIAN Bo, QIN Xiaohan, et al. Satellite-terrestrial integrated 6G: An ultra-dense LEO networking management architecture[J]. IEEE Wireless Communications, 2024, 31(1): 62–69. doi: 10.1109/MWC.011.2200198.
|
[7] |
ZHENG Gao, WANG Ning, and TAFAZOLLI R R. SDN in space: A virtual data-plane addressing scheme for supporting LEO satellite and terrestrial networks integration[J]. IEEE/ACM Transactions on Networking, 2024, 32(2): 1781–1796. doi: 10.1109/TNET.2023.3330672.
|
[8] |
YANG Huiting, LIU Wei, WANG Xiangfeng, et al. Group sparse space information network with joint virtual network function deployment and maximum flow routing strategy[J]. IEEE Transactions on Wireless Communications, 2023, 22(8): 5291–5305. doi: 10.1109/TWC.2022.3233067.
|
[9] |
XIA Qiufen, WANG Guijie, XU Zichuan, et al. Efficient algorithms for service chaining in NFV-enabled satellite edge networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 5677–5694. doi: 10.1109/TMC.2023.3312352.
|
[10] |
BAO Jinzhen, ZHAO Baokang, YU Wangrong, et al. OpenSAN: A software-defined satellite network architecture[C]. Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, USA, 2014: 347–348. doi: 10.1145/2619239.2631454.
|
[11] |
YANG Bowei, WU Yue, CHU Xiaoli, et al. Seamless handover in software-defined satellite networking[J]. IEEE Communications Letters, 2016, 20(9): 1768–1771. doi: 10.1109/LCOMM.2016.2585482.
|
[12] |
FENG Jing, JIANG Lei, SHEN Ye, et al. A scheme for software defined ORS satellite networking[C]. 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney, Australia, 2014: 716–721. doi: 10.1109/BDCloud.2014.19.
|
[13] |
FENG Bohao, ZHOU Huachun, ZHANG Hongke, et al. HetNet: A flexible architecture for heterogeneous satellite-terrestrial networks[J]. IEEE Network, 2017, 31(6): 86–92. doi: 10.1109/MNET.2017.1600330.
|
[14] |
SHENG Min, WANG Yu, LI Jiandong, et al. Toward a flexible and reconfigurable broadband satellite network: Resource management architecture and strategies[J]. IEEE Wireless Communications, 2017, 24(4): 127–133. doi: 10.1109/MWC.2017.1600173.
|
[15] |
LI Taixin, ZHOU Huachun, LUO Hongbin, et al. SERvICE: A software defined framework for integrated space-terrestrial satellite communication[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 703–716. doi: 10.1109/TMC.2017.2732343.
|
[16] |
ZHANG Ning, ZHANG Shan, YANG Peng, et al. Software defined space-air-ground integrated vehicular networks: Challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(7): 101–109. doi: 10.1109/MCOM.2017.1601156.
|
[17] |
SHI Yongpeng, CAO Yurui, LIU Jiajia, et al. A cross-domain SDN architecture for multi-layered space-terrestrial integrated networks[J]. IEEE Network, 2019, 33(1): 29–35. doi: 10.1109/MNET.2018.1800191.
|
[18] |
CHEN Chen, LIAO Zhan, JU Ying, et al. Hierarchical domain-based multicontroller deployment strategy in SDN-enabled space-air-ground integrated network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 4864–4879. doi: 10.1109/TAES.2022.3199191.
|
[19] |
ESMAT H H, LORENZO B, and SHI Weisong. Toward resilient network slicing for satellite-terrestrial edge computing IoT[J]. IEEE Internet of Things Journal, 2023, 10(16): 14621–14645. doi: 10.1109/JIOT.2023.3277466.
|
[20] |
CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
|
[21] |
ZHANG Zhenjiang, ZHANG Wenyu, and TSENG F H. Satellite mobile edge computing: Improving QoS of high-speed satellite-terrestrial networks using edge computing techniques[J]. IEEE Network, 2019, 33(1): 70–76. doi: 10.1109/MNET.2018.1800172.
|
[22] |
QIU Chao, YAO Haipeng, YU R F, et al. Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5871–5883. doi: 10.1109/TVT.2019.2907682.
|
[23] |
XIE Renchao, TANG Qinqin, WANG Qiuning, et al. Satellite-terrestrial integrated edge computing networks: Architecture, challenges, and open issues[J]. IEEE Network, 2020, 34(3): 224–231. doi: 10.1109/MNET.011.1900369.
|
[24] |
ZHANG Yalin, GAO Xiaozheng, YUAN Hang, et al. Joint UAV trajectory and power allocation with hybrid FSO/RF for secure space-air-ground communications[J]. IEEE Internet of Things Journal, 2024, 11(19): 31407–31421. doi: 10.1109/JIOT.2024.3419264.
|
[25] |
ZHAI Daosen, ZHANG Ruonan, DU Jianbo, et al. Simultaneous wireless information and power transfer at 5G new frequencies: Channel measurement and network design[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 171–186. doi: 10.1109/JSAC.2018.2872366.
|
[26] |
SONG Yanjie, OU Junwei, WU Jian, et al. A cluster-based genetic optimization method for satellite range scheduling system[J]. Swarm and Evolutionary Computation, 2023, 79: 101316. doi: 10.1016/j.swevo.2023.101316.
|