Advanced Search
Volume 46 Issue 12
Dec.  2025
Turn off MathJax
Article Contents
CHEN Xiaolei, WANG Xing, ZHANG Xuegong, DU Zelong. Adjacent Coordination Network for Salient Object Detection in 360 Degree Omnidirectional Images[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4529-4541. doi: 10.11999/JEIT240502
Citation: CHEN Xiaolei, WANG Xing, ZHANG Xuegong, DU Zelong. Adjacent Coordination Network for Salient Object Detection in 360 Degree Omnidirectional Images[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4529-4541. doi: 10.11999/JEIT240502

Adjacent Coordination Network for Salient Object Detection in 360 Degree Omnidirectional Images

doi: 10.11999/JEIT240502
Funds:  The National Natural Science Foundation of China (61967012)
  • Received Date: 2024-06-19
  • Rev Recd Date: 2024-11-15
  • Available Online: 2024-11-27
  • Publish Date: 2025-12-01
  • To address the issues of significant target scale variation, edge discontinuity, and blurring in 360° omnidirectional images Salient Object Detection (SOD), a method based on the Adjacent Coordination Network (ACoNet) is proposed. First, an adjacent detail fusion module is used to capture detailed and edge information from adjacent features, which facilitates accurate localization of salient objects. Then, a semantic-guided feature aggregation module is employed to aggregate semantic feature information from different scales between shallow and deep features, suppressing the noise transmitted by shallow features. This helps alleviate the problem of discontinuous salient objects and blurred boundaries between the object and background in the decoding stage. Additionally, a multi-scale semantic fusion submodule is constructed to enlarge the receptive field across different convolution layers, thereby achieving better training of the salient object boundaries. Extensive experimental results on two public datasets demonstrate that, compared to 13 other advanced methods, the proposed approach achieves significant improvements in six objective evaluation metrics. Moreover, the subjective visualized detection results show better edge contours and clearer spatial structural details of the salient maps.
  • loading
  • [1]
    CONG Runmin, LEI Jianjun, FU Huazhu, et al. Review of visual saliency detection with comprehensive information[J]. IEEE Transactions on circuits and Systems for Video Technology, 2019, 29(10): 2941–2959. doi: 10.1109/TCSVT.2018.2870832.
    [2]
    丁颖, 刘延伟, 刘金霞, 等. 虚拟现实全景图像显著性检测研究进展综述[J]. 电子学报, 2019, 47(7): 1575–1583. doi: 10.3969/j.issn.0372-2112.2019.07.024.

    DING Ying, LIU Yanwei, LIU Jinxia, et al. An overview of research progress on saliency detection of panoramic VR images[J]. Acta Electronica Sinica, 2019, 47(7): 1575–1583. doi: 10.3969/j.issn.0372-2112.2019.07.024.
    [3]
    GONG Xuan, XIA Xin, ZHU Wentao, et al. Deformable Gabor feature networks for biomedical image classification[C]. 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 4003–4011. doi: 10.1109/WACV48630.2021.00405.
    [4]
    XU K, BA J, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]. The 32nd International Conference on Machine Learning, Lille, France, 2048–2057.
    [5]
    张德祥, 王俊, 袁培成. 基于注意力机制的多尺度全场景监控目标检测方法[J]. 电子与信息学报, 2022, 44(9): 3249–3257. doi: 10.11999/JEIT210664.

    ZHANG Dexiang, WANG Jun, and YUAN Peicheng. Object detection method for multi-scale full-scene surveillance based on attention mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3249–3257. doi: 10.11999/JEIT210664.
    [6]
    GAO Yuan, SHI Miaojing, TAO Dacheng, et al. Database saliency for fast image retrieval[J]. IEEE Transactions on Multimedia, 2015, 17(3): 359–369. doi: 10.1109/TMM.2015.2389616.
    [7]
    LI Jia, SU Jinming, XIA Changqun, et al. Distortion-adaptive salient object detection in 360°omnidirectional images[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(1): 38–48. doi: 10.1109/JSTSP.2019.2957982.
    [8]
    MA Guangxiao, LI Shuai, CHEN Chenglizhao, et al. Stage-wise salient object detection in 360°omnidirectional image via object-level semantical saliency ranking[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(12): 3535–3545. doi: 10.1109/TVCG.2020.3023636.
    [9]
    HUANG Mengke, LIU Zhi, LI Gongyang, et al. FANet: Features adaptation network for 360°omnidirectional salient object detection[J]. IEEE Signal Processing Letters, 2020, 27: 1819–1823. doi: 10.1109/LSP.2020.3028192.
    [10]
    LIU Nian and HAN Junwei. DHSNet: Deep hierarchical saliency network for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 678–686. doi: 10.1109/CVPR.2016.80.
    [11]
    PANG Youwei, ZHAO Xiaoqi, ZHANG Lihe, et al. Multi-scale interactive network for salient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9410–9419. doi: 10.1109/CVPR42600.2020.00943.
    [12]
    ZENG Yi, ZHANG Pingping, LIN Zhe, et al. Towards high-resolution salient object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 7233–7242. doi: 10.1109/ICCV.2019.00733.
    [13]
    ZHANG Lu, DAI Ju, LU Huchuan, et al. A bi-directional message passing model for salient object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1741–1750. doi: 10.1109/CVPR.2018.00187.
    [14]
    FENG Mengyang, LU Huchuan, and DING E. Attentive feedback network for boundary-aware salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1623–1632. doi: 10.1109/CVPR.2019.00172.
    [15]
    WU Zhe, SU Li, and HUANG Qingming. Cascaded partial decoder for fast and accurate salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3902–3911. doi: 10.1109/CVPR.2019.00403.
    [16]
    MA Mingcan, XIA Changqun, and LI Jia. Pyramidal feature shrinking for salient object detection[C]. The 35th AAAI Conference on Artificial Intelligence, 2021: 2311–2318. doi: 10.1609/aaai.v35i3.16331.
    [17]
    QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. U2-Net: Going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404. doi: 10.1016/j.patcog.2020.107404.
    [18]
    PAN Chen, LIU Jianfeng, YAN Weiqi, et al. Salient object detection based on visual perceptual saturation and two-stream hybrid networks[J]. IEEE Transactions on Image Processing, 2021, 30: 4773–4787. doi: 10.1109/TIP.2021.3074796.
    [19]
    MA Guangxiao, LI Shuai, CHEN Chenglizhao, et al. Rethinking image salient object detection: Object-level semantic saliency reranking first, pixelwise saliency refinement later[J]. IEEE Transactions on Image Processing, 2021, 30: 4238–4252. doi: 10.1109/TIP.2021.3068649.
    [20]
    REN Guangyu, XIE Yanchu, DAI Tianhong, et al. Progressive multi-scale fusion network for RGB-D salient object detection[J]. arXiv: 2106.03941, 2022. doi: 10.48550/arXiv.2106.03941.
    [21]
    CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582. doi: 10.1109/TPAMI.2014.2345401.
    [22]
    LIU Qing, HONG Xiaopeng, ZOU Beiji, et al. Hierarchical contour closure-based holistic salient object detection[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4537–4552. doi: 10.1109/TIP.2017.2703081.
    [23]
    ZHAO Rui, OUYANG Wanli, LI Hongsheng, et al. Saliency detection by multi-context deep learning[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1265–1274. doi: 10.1109/CVPR.2015.7298731.
    [24]
    LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. A simple pooling-based design for real-time salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3912–3921. doi: 10.1109/CVPR.2019.00404.
    [25]
    WU Yuhuan, LIU Yun, ZHANG Le, et al. EDN: Salient object detection via extremely-downsampled network[J]. IEEE Transactions on Image Processing, 2022, 31: 3125–3136. doi: 10.1109/TIP.2022.3164550.
    [26]
    ZHAO Jiaxing, LIU Jiangjiang, FAN Dengping, et al. EGNet: Edge guidance network for salient object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8778–8787. doi: 10.1109/ICCV.2019.00887.
    [27]
    LV Yunqiu, LIU Bowen, ZHANG Jing, et al. Semi-supervised active salient object detection[J]. Pattern Recognition, 2022, 123: 108364. doi: 10.1016/j.patcog.2021.108364.
    [28]
    WANG Tiantian, BORJI A, ZHANG Lihe, et al. A stagewise refinement model for detecting salient objects in images[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4039–4048. doi: 10.1109/ICCV.2017.433.
    [29]
    HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5300–5309. doi: 10.1109/CVPR.2017.563.
    [30]
    LIU Nian, HAN Junwei, and YANG M H. PiCANet: Learning pixel-wise contextual attention for saliency detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3089–3098. doi: 10.1109/CVPR.2018.00326.
    [31]
    OUYANG Wentao, ZHANG Xiuwu, ZHAO Lei, et al. MiNet: Mixed interest network for cross-domain click-through rate prediction[C/Ol]. The 29th ACM International Conference on Information & Knowledge Management, 2020: 2669–2676. doi: 10.1145/3340531.3412728.
    [32]
    HUANG Tongwen, SHE Qingyun, WANG Zhiqiang, et al. GateNet: Gating-enhanced deep network for click-through rate prediction[J]. arXiv: 2007.03519, 2020. doi: 10.48550/arXiv.2007.03519.
    [33]
    ZHANG Yi, ZHANG Lu, HAMIDOUCHE W, et al. A fixation-based 360° benchmark dataset for salient object detection[C]. Proceedings of 2020 IEEE International Conference on Image Processing, Abu Dhabi, United Arab Emirates, 2020: 3458–3462. doi: 10.1109/ICIP40778.2020.9191158.
    [34]
    CONG Runmin, HUANG Ke, LEI Jianjun, et al. Multi-projection fusion and refinement network for salient object detection in 360° omnidirectional image[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 9495–9507. doi: 10.1109/TNNLS.2022.3233883.
    [35]
    CHEN Dongwen, QING Chunmei, XU Xiangmin, et al. SalBiNet360: Saliency prediction on 360° images with local-global bifurcated deep network[C]. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, Atlanta, USA, 2020: 92–100. doi: 10.1109/VR46266.2020.00027.
    [36]
    CHEN Gang, SHAO Feng, CHAI Xiongli, et al. Multi-stage salient object detection in 360° omnidirectional image using complementary object-level semantic information[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 776–789. doi: 10.1109/TETCI.2023.3259433.
    [37]
    ZHANG Yi, HAMIDOUCHE W, and DEFORGES O. Channel-spatial mutual attention network for 360° salient object detection[C]. The 2022 26th International Conference on Pattern Recognition, Montreal, Canada, 2022: 3436–3442. doi: 10.1109/ICPR56361.2022.9956354.
    [38]
    WU Junjie, XIA Changqun, YU Tianshu, et al. View-aware salient object detection for 360° omnidirectional image[J]. IEEE Transactions on Multimedia, 2023, 25: 6471–6484. doi: 10.1109/TMM.2022.3209015.
    [39]
    LIN Yuhan, SUN Han, LIU Ningzhong, et al. A lightweight multi-scale context network for salient object detection in optical remote sensing images[C]. The 2022 26th International Conference on Pattern Recognition, Montreal, Canada, 2022: 238–244. doi: 10.1109/ICPR56361.2022.9956350.
    [40]
    JIANG Yao, ZHANG Wenbo, FU Keren, et al. MEANet: Multi-modal edge-aware network for light field salient object detection[J]. Neurocomputing, 2022, 491: 78–90. doi: 10.1016/j.neucom.2022.03.056.
    [41]
    LI Gongyang, LIU Zhi, ZHANG Xinpeng, et al. Lightweight salient object detection in optical remote-sensing images via semantic matching and edge alignment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5601111. doi: 10.1109/TGRS.2023.3235717.
    [42]
    LI Gongyang, LIU Zhi, BAI Zhen,et al. Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5617712. doi: 10.1109/TGRS.2022.3145483.
    [43]
    FENG Dejun, CHEN Hongyu, LIU Suning, et al. Boundary-semantic collaborative guidance network with dual-stream feedback mechanism for salient object detection in optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4706317. doi: 10.1109/TGRS.2023.3332282.
    [44]
    LIN Yuhan, SUN Han, LIU Ningzhong, et al. Attention guided network for salient object detection in optical remote sensing images[C]. The 31st International Conference on Artificial Neural Networks, Bristol, UK, 2022: 25–36. doi: 10.1007/978-3-031-15919-0_3.
    [45]
    WANG Pengfei, ZHANG Chengquan, QI Fei, et al. PGNet: Real-time arbitrarily-shaped text spotting with point gathering network[C/OL]. The 35th AAAI Conference on Artificial Intelligence, 2021: 2782–2790. doi: 10.1609/aaai.v35i4.16383.
    [46]
    LI Gongyang, LIU Zhi, ZENG Dan, et al. Adjacent context coordination network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 526–538. doi: 10.1109/TCYB.2022.3162945.
    [47]
    SONG Yue, TANG Hao, SEBE N, et al. Disentangle saliency detection into cascaded detail modeling and body filling[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 19(1): 7. doi: 10.1145/3513134.
    [48]
    LIU Zhengyi, TAN Yacheng, HE Qian, et al. SwinNet: Swin transformer drives edge-aware RGB-D and RGB-T salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4486–4497. doi: 10.1109/TCSVT.2021.3127149.
    [49]
    HUANG Mengke, LI Gongyang, LIU Zhi, et al. Lightweight distortion-aware network for salient object detection in omnidirectional images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 6191–6197. doi: 10.1109/TCSVT.2023.3253685.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (76) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return