Citation: | CHEN Xiaolei, WANG Xing, ZHANG Xuegong, DU Zelong. Adjacent Coordination Network for Salient Object Detection in 360 Degree Omnidirectional Images[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4529-4541. doi: 10.11999/JEIT240502 |
[1] |
CONG Runmin, LEI Jianjun, FU Huazhu, et al. Review of visual saliency detection with comprehensive information[J]. IEEE Transactions on circuits and Systems for Video Technology, 2019, 29(10): 2941–2959. doi: 10.1109/TCSVT.2018.2870832.
|
[2] |
丁颖, 刘延伟, 刘金霞, 等. 虚拟现实全景图像显著性检测研究进展综述[J]. 电子学报, 2019, 47(7): 1575–1583. doi: 10.3969/j.issn.0372-2112.2019.07.024.
DING Ying, LIU Yanwei, LIU Jinxia, et al. An overview of research progress on saliency detection of panoramic VR images[J]. Acta Electronica Sinica, 2019, 47(7): 1575–1583. doi: 10.3969/j.issn.0372-2112.2019.07.024.
|
[3] |
GONG Xuan, XIA Xin, ZHU Wentao, et al. Deformable Gabor feature networks for biomedical image classification[C]. 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 4003–4011. doi: 10.1109/WACV48630.2021.00405.
|
[4] |
XU K, BA J, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]. The 32nd International Conference on Machine Learning, Lille, France, 2048–2057.
|
[5] |
张德祥, 王俊, 袁培成. 基于注意力机制的多尺度全场景监控目标检测方法[J]. 电子与信息学报, 2022, 44(9): 3249–3257. doi: 10.11999/JEIT210664.
ZHANG Dexiang, WANG Jun, and YUAN Peicheng. Object detection method for multi-scale full-scene surveillance based on attention mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3249–3257. doi: 10.11999/JEIT210664.
|
[6] |
GAO Yuan, SHI Miaojing, TAO Dacheng, et al. Database saliency for fast image retrieval[J]. IEEE Transactions on Multimedia, 2015, 17(3): 359–369. doi: 10.1109/TMM.2015.2389616.
|
[7] |
LI Jia, SU Jinming, XIA Changqun, et al. Distortion-adaptive salient object detection in 360°omnidirectional images[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(1): 38–48. doi: 10.1109/JSTSP.2019.2957982.
|
[8] |
MA Guangxiao, LI Shuai, CHEN Chenglizhao, et al. Stage-wise salient object detection in 360°omnidirectional image via object-level semantical saliency ranking[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(12): 3535–3545. doi: 10.1109/TVCG.2020.3023636.
|
[9] |
HUANG Mengke, LIU Zhi, LI Gongyang, et al. FANet: Features adaptation network for 360°omnidirectional salient object detection[J]. IEEE Signal Processing Letters, 2020, 27: 1819–1823. doi: 10.1109/LSP.2020.3028192.
|
[10] |
LIU Nian and HAN Junwei. DHSNet: Deep hierarchical saliency network for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 678–686. doi: 10.1109/CVPR.2016.80.
|
[11] |
PANG Youwei, ZHAO Xiaoqi, ZHANG Lihe, et al. Multi-scale interactive network for salient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9410–9419. doi: 10.1109/CVPR42600.2020.00943.
|
[12] |
ZENG Yi, ZHANG Pingping, LIN Zhe, et al. Towards high-resolution salient object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 7233–7242. doi: 10.1109/ICCV.2019.00733.
|
[13] |
ZHANG Lu, DAI Ju, LU Huchuan, et al. A bi-directional message passing model for salient object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1741–1750. doi: 10.1109/CVPR.2018.00187.
|
[14] |
FENG Mengyang, LU Huchuan, and DING E. Attentive feedback network for boundary-aware salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1623–1632. doi: 10.1109/CVPR.2019.00172.
|
[15] |
WU Zhe, SU Li, and HUANG Qingming. Cascaded partial decoder for fast and accurate salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3902–3911. doi: 10.1109/CVPR.2019.00403.
|
[16] |
MA Mingcan, XIA Changqun, and LI Jia. Pyramidal feature shrinking for salient object detection[C]. The 35th AAAI Conference on Artificial Intelligence, 2021: 2311–2318. doi: 10.1609/aaai.v35i3.16331.
|
[17] |
QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. U2-Net: Going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404. doi: 10.1016/j.patcog.2020.107404.
|
[18] |
PAN Chen, LIU Jianfeng, YAN Weiqi, et al. Salient object detection based on visual perceptual saturation and two-stream hybrid networks[J]. IEEE Transactions on Image Processing, 2021, 30: 4773–4787. doi: 10.1109/TIP.2021.3074796.
|
[19] |
MA Guangxiao, LI Shuai, CHEN Chenglizhao, et al. Rethinking image salient object detection: Object-level semantic saliency reranking first, pixelwise saliency refinement later[J]. IEEE Transactions on Image Processing, 2021, 30: 4238–4252. doi: 10.1109/TIP.2021.3068649.
|
[20] |
REN Guangyu, XIE Yanchu, DAI Tianhong, et al. Progressive multi-scale fusion network for RGB-D salient object detection[J]. arXiv: 2106.03941, 2022. doi: 10.48550/arXiv.2106.03941.
|
[21] |
CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582. doi: 10.1109/TPAMI.2014.2345401.
|
[22] |
LIU Qing, HONG Xiaopeng, ZOU Beiji, et al. Hierarchical contour closure-based holistic salient object detection[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4537–4552. doi: 10.1109/TIP.2017.2703081.
|
[23] |
ZHAO Rui, OUYANG Wanli, LI Hongsheng, et al. Saliency detection by multi-context deep learning[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1265–1274. doi: 10.1109/CVPR.2015.7298731.
|
[24] |
LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. A simple pooling-based design for real-time salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3912–3921. doi: 10.1109/CVPR.2019.00404.
|
[25] |
WU Yuhuan, LIU Yun, ZHANG Le, et al. EDN: Salient object detection via extremely-downsampled network[J]. IEEE Transactions on Image Processing, 2022, 31: 3125–3136. doi: 10.1109/TIP.2022.3164550.
|
[26] |
ZHAO Jiaxing, LIU Jiangjiang, FAN Dengping, et al. EGNet: Edge guidance network for salient object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8778–8787. doi: 10.1109/ICCV.2019.00887.
|
[27] |
LV Yunqiu, LIU Bowen, ZHANG Jing, et al. Semi-supervised active salient object detection[J]. Pattern Recognition, 2022, 123: 108364. doi: 10.1016/j.patcog.2021.108364.
|
[28] |
WANG Tiantian, BORJI A, ZHANG Lihe, et al. A stagewise refinement model for detecting salient objects in images[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4039–4048. doi: 10.1109/ICCV.2017.433.
|
[29] |
HOU Qibin, CHENG Mingming, HU Xiaowei, et al. Deeply supervised salient object detection with short connections[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5300–5309. doi: 10.1109/CVPR.2017.563.
|
[30] |
LIU Nian, HAN Junwei, and YANG M H. PiCANet: Learning pixel-wise contextual attention for saliency detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3089–3098. doi: 10.1109/CVPR.2018.00326.
|
[31] |
OUYANG Wentao, ZHANG Xiuwu, ZHAO Lei, et al. MiNet: Mixed interest network for cross-domain click-through rate prediction[C/Ol]. The 29th ACM International Conference on Information & Knowledge Management, 2020: 2669–2676. doi: 10.1145/3340531.3412728.
|
[32] |
HUANG Tongwen, SHE Qingyun, WANG Zhiqiang, et al. GateNet: Gating-enhanced deep network for click-through rate prediction[J]. arXiv: 2007.03519, 2020. doi: 10.48550/arXiv.2007.03519.
|
[33] |
ZHANG Yi, ZHANG Lu, HAMIDOUCHE W, et al. A fixation-based 360° benchmark dataset for salient object detection[C]. Proceedings of 2020 IEEE International Conference on Image Processing, Abu Dhabi, United Arab Emirates, 2020: 3458–3462. doi: 10.1109/ICIP40778.2020.9191158.
|
[34] |
CONG Runmin, HUANG Ke, LEI Jianjun, et al. Multi-projection fusion and refinement network for salient object detection in 360° omnidirectional image[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 9495–9507. doi: 10.1109/TNNLS.2022.3233883.
|
[35] |
CHEN Dongwen, QING Chunmei, XU Xiangmin, et al. SalBiNet360: Saliency prediction on 360° images with local-global bifurcated deep network[C]. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, Atlanta, USA, 2020: 92–100. doi: 10.1109/VR46266.2020.00027.
|
[36] |
CHEN Gang, SHAO Feng, CHAI Xiongli, et al. Multi-stage salient object detection in 360° omnidirectional image using complementary object-level semantic information[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 776–789. doi: 10.1109/TETCI.2023.3259433.
|
[37] |
ZHANG Yi, HAMIDOUCHE W, and DEFORGES O. Channel-spatial mutual attention network for 360° salient object detection[C]. The 2022 26th International Conference on Pattern Recognition, Montreal, Canada, 2022: 3436–3442. doi: 10.1109/ICPR56361.2022.9956354.
|
[38] |
WU Junjie, XIA Changqun, YU Tianshu, et al. View-aware salient object detection for 360° omnidirectional image[J]. IEEE Transactions on Multimedia, 2023, 25: 6471–6484. doi: 10.1109/TMM.2022.3209015.
|
[39] |
LIN Yuhan, SUN Han, LIU Ningzhong, et al. A lightweight multi-scale context network for salient object detection in optical remote sensing images[C]. The 2022 26th International Conference on Pattern Recognition, Montreal, Canada, 2022: 238–244. doi: 10.1109/ICPR56361.2022.9956350.
|
[40] |
JIANG Yao, ZHANG Wenbo, FU Keren, et al. MEANet: Multi-modal edge-aware network for light field salient object detection[J]. Neurocomputing, 2022, 491: 78–90. doi: 10.1016/j.neucom.2022.03.056.
|
[41] |
LI Gongyang, LIU Zhi, ZHANG Xinpeng, et al. Lightweight salient object detection in optical remote-sensing images via semantic matching and edge alignment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5601111. doi: 10.1109/TGRS.2023.3235717.
|
[42] |
LI Gongyang, LIU Zhi, BAI Zhen,et al. Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5617712. doi: 10.1109/TGRS.2022.3145483.
|
[43] |
FENG Dejun, CHEN Hongyu, LIU Suning, et al. Boundary-semantic collaborative guidance network with dual-stream feedback mechanism for salient object detection in optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4706317. doi: 10.1109/TGRS.2023.3332282.
|
[44] |
LIN Yuhan, SUN Han, LIU Ningzhong, et al. Attention guided network for salient object detection in optical remote sensing images[C]. The 31st International Conference on Artificial Neural Networks, Bristol, UK, 2022: 25–36. doi: 10.1007/978-3-031-15919-0_3.
|
[45] |
WANG Pengfei, ZHANG Chengquan, QI Fei, et al. PGNet: Real-time arbitrarily-shaped text spotting with point gathering network[C/OL]. The 35th AAAI Conference on Artificial Intelligence, 2021: 2782–2790. doi: 10.1609/aaai.v35i4.16383.
|
[46] |
LI Gongyang, LIU Zhi, ZENG Dan, et al. Adjacent context coordination network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 526–538. doi: 10.1109/TCYB.2022.3162945.
|
[47] |
SONG Yue, TANG Hao, SEBE N, et al. Disentangle saliency detection into cascaded detail modeling and body filling[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 19(1): 7. doi: 10.1145/3513134.
|
[48] |
LIU Zhengyi, TAN Yacheng, HE Qian, et al. SwinNet: Swin transformer drives edge-aware RGB-D and RGB-T salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4486–4497. doi: 10.1109/TCSVT.2021.3127149.
|
[49] |
HUANG Mengke, LI Gongyang, LIU Zhi, et al. Lightweight distortion-aware network for salient object detection in omnidirectional images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 6191–6197. doi: 10.1109/TCSVT.2023.3253685.
|