| Citation: | LU Di, YUAN Xuan. LGDNet: Table Detection Network Combining Local and Global Features[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4553-4562. doi: 10.11999/JEIT240428 | 
 
	                | [1] | 高良才, 李一博, 都林, 等. 表格识别技术研究进展[J]. 中国图象图形学报, 2022, 27(6): 1898–1917. doi:  10.11834/jig.220152. GAO Liangcai, LI Yibo, DU Lin, et al. A survey on table recognition technology[J]. Journal of Image and Graphics, 2022, 27(6): 1898–1917. doi:  10.11834/jig.220152. | 
| [2] | WATANABE T, LUO Qin, and SUGIE N. Structure recognition methods for various types of documents[J]. Machine Vision and Applications, 1993, 6(2/3): 163–176. doi:  10.1007/BF01211939. | 
| [3] | GATOS B, DANATSAS D, PRATIKAKIS I,    et al. Automatic table detection in document images[C]. The Third International Conference on Advances in Pattern Recognition, Bath, UK, 2005: 609–618. doi:  10.1007/11551188_67. | 
| [4] | KASAR T, BARLAS P, ADAM S,    et al. Learning to detect tables in scanned document images using line information[C]. 2013 12th International Conference on Document Analysis and Recognition, Washington, USA, 2013: 1185–1189. doi:  10.1109/ICDAR.2013.240. | 
| [5] | ANH T, IN-SEOP N, and SOO-HYUNG K. A hybrid method for table detection from document image[C]. 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 2015: 131–135. doi:  10.1109/ACPR.2015.7486480. | 
| [6] | LEE K H, CHOY Y C, and CHO S B. Geometric structure analysis of document images: A knowledge-based approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1224–1240. doi:  10.1109/34.888708. | 
| [7] | SCHREIBER S, AGNE S, WOLF I,    et al. DeepDeSRT: Deep learning for detection and structure recognition of tables in document images[C]. 2017 14th IAPR International Conference on Document Analysis and Recognition, Kyoto, Japan, 2017: 1162–1167. doi:  10.1109/ICDAR.2017.192. | 
| [8] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi:  10.1109/TPAMI.2016.2577031. | 
| [9] | ARIF S and SHAFAIT F. Table detection in document images using foreground and background features[C]. 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 2018: 1–8. doi:  10.1109/DICTA.2018.8615795. | 
| [10] | SIDDIQUI S A, MALIK M I, AGNE S, et al. DeCNT: Deep deformable CNN for table detection[J]. IEEE Access, 2018, 6: 74151–74161. doi:  10.1109/ACCESS.2018.2880211. | 
| [11] | SUN Ningning, ZHU Yuanping, and HU Xiaoming. Faster R-CNN based table detection combining corner locating[C]. 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 2019: 1314–1319. doi:  10.1109/ICDAR.2019.00212. | 
| [12] | CAI Zhaowei and VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 6154–6162. doi:  10.1109/CVPR.2018.00644. | 
| [13] | PRASAD D, GADPAL A, KAPADNI K,    et al. CascadeTabNet: An approach for end to end table detection and structure recognition from image-based documents[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, USA, 2020: 2439–2447. doi:  10.1109/CVPRW50498.2020.00294. | 
| [14] | AGARWAL M, MONDAL A, and JAWAHAR C V. CDeC-Net: Composite deformable cascade network for table detection in document images[C]. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 2021: 9491–9498. doi:  10.1109/ICPR48806.2021.9411922. | 
| [15] | HUANG Yilun, YAN Qinqin, LI Yibo,    et al. A YOLO-based table detection method[C]. 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, 2019: 813–818. doi:  10.1109/ICDAR.2019.00135. | 
| [16] | SHEHZADI T, HASHMI K A, STRICKER D,    et al. Towards end-to-end semi-supervised table detection with deformable transformer[C]. The 17th International Conference on Document Analysis and Recognition-ICDAR 2023, San José, USA, 2023: 51–76. doi:  10.1007/978-3-031-41679-8_4. | 
| [17] | ZHU Xizhou, SU Weijie, LU Lewei,    et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021. | 
| [18] | XIAO Bin, SIMSEK M, KANTARCI B, et al. Table detection for visually rich document images[J]. Knowledge-Based Systems, 2023, 282: 111080. doi:  10.1016/j.knosys.2023.111080. | 
| [19] | SUN Peize, ZHANG Rufeng, JIANG Yi,    et al. Sparse R-CNN: End-to-end object detection with learnable proposals[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 14449–14458. doi:  10.1109/CVPR46437.2021.01422. | 
| [20] | CHEN Shoufa, SUN Peize, SONG Yibing,    et al. DiffusionDet: Diffusion model for object detection[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 19773–19786. doi:  10.1109/ICCV51070.2023.01816. | 
| [21] | ZHANG Hao, LI Feng, LIU Shilong,    et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[EB/OL]. https://arxiv.org/abs/2203.03605, 2022. | 
| [22] | ZONG Zhuofan, SONG Guanglu, and LIU Yu. DETRs with collaborative hybrid assignments training[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 6748–6758. doi:  10.1109/ICCV51070.2023.00621. | 
| [23] | ABDALLAH A, BERENDEYEV A, NURADIN I, et al. TNCR: Table net detection and classification dataset[J]. Neurocomputing, 2022, 473: 79–97. doi:  10.1016/j.neucom.2021.11.101. | 
| [24] | MONDAL A, LIPPS P, and JAWAHAR C V. IIIT-AR-13K: A new dataset for graphical object detection in documents[C]. The 14th IAPR International Workshop, DAS 2020, Wuhan, China, 2020: 216-230. doi:  10.1007/978-3-030-57058-3_16. | 
| [25] | HE Kaiming, GKIOXARI G, DOLLÁR P,    et al. Mask R-CNN[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi:  10.1109/ICCV.2017.322. | 
