Advanced Search
Turn off MathJax
Article Contents
CHEN Guangwu, WANG Siqi, SI Yongbo, ZHOU Xin. Research on Combined Navigation Algorithm Based on Adaptive Interactive Multi-Kalman Filter Modeling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240426
Citation: CHEN Guangwu, WANG Siqi, SI Yongbo, ZHOU Xin. Research on Combined Navigation Algorithm Based on Adaptive Interactive Multi-Kalman Filter Modeling[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240426

Research on Combined Navigation Algorithm Based on Adaptive Interactive Multi-Kalman Filter Modeling

doi: 10.11999/JEIT240426
Funds:  Gansu Province Science and Technology Major Project (21ZD4WA018), The National Railway Group Science and Technology Program Project (N2023G064, N2022G010), Gansu Province Natural Science Foundation (23JRRA869), Gansu Province Science and Technology Guidance Program (2020-61-14)
  • Received Date: 2024-05-29
  • Rev Recd Date: 2024-09-09
  • Available Online: 2024-09-17
  • Practical applications struggle to obtain prior knowledge about inertial systems and sensors, affecting information fusion and positioning accuracy in combined navigation systems. To address the degradation of integrated navigation performance due to satellite signal quality changes and system nonlinearity in vehicle navigation, a Fuzzy Adaptive Interactive Multi-Model algorithm based on Multiple Kalman Filters (FAIMM-MKF) is proposed. It integrates a Fuzzy Controller based on satellite signal quality (Fuzzy Controller) and an Adaptive Interactive Multi-Model (AIMM). Improved Kalman filters such as Unscented Kalman Filter (UKF), Iterated Extended Kalman Filter (IEKF), and Square-Root Cubature Kalman Filter (SRCKF) are designed to match vehicle dynamics models. The method’s performance is verified through in-vehicle semi-physical simulation experiments. Results show that the method significantly improves vehicle positioning accuracy in complex environments with varying satellite signal quality compared to traditional interactive multi-model algorithms.
  • loading
  • [1]
    徐晓苏, 仲灵通. 一种基于M估计的抗差自适应多模型组合导航算法[J]. 中国惯性技术学报, 2021, 29(4): 482–490. doi: 10.13695/j.cnki.12-1222/o3.2021.04.009.

    XU Xiaosu and ZHONG Lingtong. Robust adaptive multiple model integrated navigation algorithm based on M-estimation[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 482–490. doi: 10.13695/j.cnki.12-1222/o3.2021.04.009.
    [2]
    ZHAO Huijun, LIU Jun, CHEN Xuemei, et al. Information monitoring and adaptive information fusion of multisource fusion navigation systems in complex environments[J]. IEEE Internet of Things Journal, 2024, 11(14): 25047–25056. doi: 10.1109/JIOT.2024.3391872.
    [3]
    JWO D J and CHANG W Y. Variational Bayesian based IMM robust GPS navigation filter[J]. Computers, Materials and Continua, 2022, 72(1): 755–773. doi: 10.32604/cmc.2022.025040.
    [4]
    HAN Bo, HUANG Hanqiao, LEI Lei, et al. An improved IMM algorithm based on STSRCKF for maneuvering target tracking[J]. IEEE Access, 2019, 7: 57795–57804. doi: 10.1109/ACCESS.2019.2912983.
    [5]
    MA Jian and GUO Xiaoting. Combination of IMM algorithm and ASTRWCKF for maneuvering target tracking[J]. IEEE Access, 2020, 8: 143095–143103. doi: 10.1109/ACCESS.2020.3013561.
    [6]
    王常虹, 张大力, 夏红伟, 等. GEO混合推力机动目标跟踪IMM算法[J]. 宇航学报, 2023, 44(3): 443–453. doi: 10.3873/j.issn.1000-1328.2023.03.013.

    WANG Changhong, ZHANG Dali, XIA Hongwei, et al. An IMM algorithm for tracking GEO maneuvering target with hybrid thrust[J]. Journal of Astronautics, 2023, 44(3): 443–453. doi: 10.3873/j.issn.1000-1328.2023.03.013.
    [7]
    李俊. 基于联邦卡尔曼滤波器的容错多传感器组合导航算法研究[D]. [硕士论文], 南京邮电大学, 2023. doi: 10.27251/d.cnki.gnjdc.2023.000673.

    LI Jun. Research on fault tolerant multi-sensor integrated navigation algorithm based on federated Kalman filter[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2023.000673.
    [8]
    HWANG I, SEAH C E, and LEE S. A study on stability of the interacting multiple model algorithm[J]. IEEE Transactions on Automatic Control, 2017, 62(2): 901–906. doi: 10.1109/TAC.2016.2558156.
    [9]
    XIE Guo, SUN Lanlan, WEN Tao, et al. Adaptive transition probability matrix-based parallel IMM algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(5): 2980–2989. doi: 10.1109/TSMC.2019.2922305.
    [10]
    陈维义, 何凡, 刘国强, 等. 变结构交互式多模型滤波和平滑算法[J]. 系统工程与电子技术, 2023, 45(12): 4005–4012. doi: 10.12305/j.issn.1001-506X.2023.12.31.

    CHEN Weiyi, HE Fan, LIU Guoqiang, et al. Variable structure interactive multiple model filtering and smoothing algorithm[J]. Systems Engineering and Electronics, 2023, 45(12): 4005–4012. doi: 10.12305/j.issn.1001-506X.2023.12.31.
    [11]
    曾浩, 母王强, 杨顺平. 高机动目标跟踪ATPM-IMM算法[J]. 通信学报, 2022, 43(7): 93–101. doi: 10.11959/j.issn.1000-436x.2022135.

    ZENG Hao, MU Wangqiang, and YANG Shunping. High maneuvering target tracking ATPM-IMM algorithm[J]. Journal on Communications, 2022, 43(7): 93–101. doi: 10.11959/j.issn.1000-436x.2022135.
    [12]
    FAN Peirong, CUI Xiaowei, ZHAO Sihao, et al. A two-step stochastic hybrid estimation for GNSS carrier phase tracking in urban environments[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8503718. doi: 10.1109/TIM.2021.3095062.
    [13]
    王伟, 刘萌, 薛冰. GPS辅助的SINS系统快速动基座初始对准[J]. 哈尔滨工业大学学报, 2020, 52(12): 49–57. doi: 10.11918/201905245.

    WANG Wei, LIU Meng, and XUE Bing. Fast initial alignment of GPS-assisted SINS system on moving base[J]. Journal of Harbin Institute of Technology, 2020, 52(12): 49–57. doi: 10.11918/201905245.
    [14]
    JIA Di, JIANG Lu, CHEN Tianhua, et al. IMM based sequential fault-tolerant fusion estimation with heavy-tailed noises[C]. The 2022 34th Chinese Control and Decision Conference, Hefei, China, 2022: 499–504. doi: 10.1109/CCDC55256.2022.10033545.
    [15]
    王振峰, 李飞, 王新宇, 等. 基于交互式多模型无迹卡尔曼滤波的悬架系统状态估计[J]. 兵工学报, 2021, 42(2): 242–253. doi: 10.3969/j.issn.1000-1093.2021.02.003.

    WANG Zhenfeng, LI Fei, WANG Xinyu, et al. State estimation of suspension system based on interacting multiple model unscented Kalman filter[J]. Acta Armamentarii, 2021, 42(2): 242–253. doi: 10.3969/j.issn.1000-1093.2021.02.003.
    [16]
    焦鹏悦, 杨德友, 蔡国伟. 基于Koopman算子与卡尔曼滤波的同步发电机动态状态估计[J]. 电力系统保护与控制, 2024, 52(9): 27–35. doi: 10.19783/j.cnki.pspc.231088.

    JIAO Pengyue, YANG Deyou, and CAI Guowei. Dynamic state estimation for a synchronous generator based on the Koopman operator and Kalman filter[J]. Power System Protection and Control, 2024, 52(9): 27–35. doi: 10.19783/j.cnki.pspc.231088.
    [17]
    卢道华, 宋世磊, 王佳, 等. SINS/DVL水下组合导航技术发展综述[J]. 控制理论与应用, 2022, 39(7): 1159–1170. doi: 10.7641/CTA.2021.10229.

    LU Daohua, SONG Shilei, WANG Jia, et al. Review on the development of SINS/DVL underwater integrated navigation technology[J]. Control Theory & Applications, 2022, 39(7): 1159–1170. doi: 10.7641/CTA.2021.10229.
    [18]
    SEO J W, KIM J S, KIM D J, et al. Vehicle localization using convolutional neural networks with IMM-EKF for automated vertical parking[C]. The 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 2022: 1976–1981. doi: 10.1109/ITSC55140.2022.9922403.
    [19]
    WU Qingdong, LI Chenxi, SHEN Tao, et al. Improved adaptive iterated extended Kalman filter for GNSS/INS/UWB-integrated fixed-point positioning[J]. CMES-Computer Modeling in Engineering and Sciences, 2022, 134(3): 1761–1772. doi: 10.32604/cmes.2022.020545.
    [20]
    HU Gaoge, GAO Bingbing, ZHONG Yongmin, et al. Unscented Kalman filter with process noise covariance estimation for vehicular ins/gps integration system[J]. Information Fusion, 2020, 64: 194–204. doi: 10.1016/j.inffus.2020.08.005.
    [21]
    SONG Rui, CHEN Xiyuan, FANG Yongchun, et al. Integrated navigation of GPS/INS based on fusion of recursive maximum likelihood IMM and square-root cubature Kalman filter[J]. ISA Transactions, 2020, 105: 387–395. doi: 10.1016/j.isatra.2020.05.049.
    [22]
    SUN Sibo, ZHANG Xinyu, ZHENG Ce, et al. Underwater acoustical localization of the black box utilizing single autonomous underwater vehicle based on the second-order time difference of arrival[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1268–1279. doi: 10.1109/JOE.2019.2950954.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (104) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return